High Altitude Ballooning at Central Lakes College

David Kobilka, Faculty Geoscience, CLC

Introduction
Beginning Fall semester 2010 geoscience and physics faculty at Central Lakes College (CLC) began collaborating
with faculty at Bemidi State University for flying High Altitude Balloons (HAB). Since that time we have made with faculty at Bemidji State University for flying High Altitude Balloons (HAB). Since that
12 flights. Two of these flights have been made independently, without BSU collaboration

Central Lakes College AAB flights have involved students in the following Geoscience department classes

- Earth Science and the Environment Earth Science and the Environmen
Astronomy
Nobel Confere
Honors Earth Science and Environmen
The HAB projects at CLC meet the following geoscience course outcomes
- Correctly operate modern field and laboratory analytical equipment.

Describe and explain observations in the context of contemporary Planetary and Geoscientific theories
ce lab reports.
HAB projects at CLC also have the following components:
They attempt to provide an authentic geoscience research experience, involving hypothesizing experimental design, fieldwork, experience with GIS, and data collection and analysis,
Outreach and STEM recruiting
Geoscience Fieldwork
HAB projects meet the following geoscience educational goals.
$\frac{\text { Experimental design }}{\text { Students work in }}$
Students work in teams to design an experiment that tests expected phenomena encountered as the HAB
platform ascends to near-space (typically $30,000 \mathrm{~m}$)

Above: March, 2014 student-designed HAB experiments in flight.
Field work
A typical HAB fight follows this agenda:

1. Meet early at the college, load the vehicles, and travel to the launch site
2. At the launch site, set up the balloon and payloads.
3. Test electronics, verify, trach
4. Track and chase balloon to lo landing location.

Above: Helium being dispensed fo May 2014

Above: CLC students preparing HAB for May, 2014 launch.

Geographical Information Systems
Prefight: Flight path predictions are made beginning days before the flight using freely available online software http://predict.habhub.org/

During the HAB flight: three independent
precious student payloads will not be lost.
900 MHz proprietary tracking software sad by Stratostar Corn (2t)
Automated Packet Reporting System (aprs), transmitted in a frequency band of HAM radio. This tracking is collected and relayed by HAM repeater towers, and can be viewed by anyone with an internet connection at aprs.fi/. To use this system,
ne must acquire a HAM radio license.
 on a website map: http://www.findmespot.com/en/

Above and above right: 900 MHz tracking software display carried in a chase vehicle.

Above: Preflight prediction using online
software
Data collection and analysis
$\frac{\text { ln-flight data collection routinelv includes; }}{\text { Tent }}$

- Temperature
- Pressure
- Humidity
Geiger Counter
- Accelerometer
- Accelerometer
- Gyroscope
Cameras-video and stil
$\xlongequal{O \text { thers }}$
- Solar observations
- Near space particicle collection
- Neor space particle
- lidar
$\frac{\text { Analysis }}{\text { Data files }}$
Data ines are downloaded, processed, and analyzed using
Microsoft cosoft Excel or similar software.

Above: KMz file track of HAB flight, displayed on Google Earth

Above two graphs: Student-produced graphs from

Collaboration

How collaboration facilitates CLC HAB projects
Interdepartmental
Geoscience and physics faculty and students contribute with different knowledge, interests, and skills. Physics students take the lead in wiring and software testing.
Geoscience students take the lead with experimental desis.
Geoscience students take the lead with experimental design, geographical knowledge, and knowledge of atmospheric phenomena.

Intercollegiate
-
All CC.
BSU
CICBSU HAB flights are supported by a grant funded by the Minnesota Space Grant Consortium
The P.I. for this grant is Dr. Timothy Kroeger, Geoscience Faculty, BSU
$\frac{\text { Student Teamwork }}{\text { Teamwork } \text { is assig }}$
Teamwork is assigned but also arises naturally, especially as the launch day approaches. There is so much preparation for an HAB that students quickly realize they must take charge in making it happen,
It is common for students to naturally specialize according to their interests and skills. For example, while some students have an interest in setting up and using the tracking software, others are more
comfortable with the hardware of the HAB. comfortable with the hardware of the HAB.

Outreach and STEM recruiting

Middle-school participation

With each flight, one middale school 8

with the school but typically involves
Student presence on the day of the flight. Student presence on the day of the flight. Often this involves an entire 8t grade class (one of more
busses full of students). They come for the launch, chase, and retrieval. Payloads attached
during the flight.
Flight tracking. Using aprs.fi anyone, anywhere can track the HAB. This can be beneficial in the eve that flight tracking ability is lost in the chase vehicles. For classes that choose not to particicipate in the launch and chase, but have a payload attached, they still can track the filght on aprs.fi.

Above: Menahga Middle School $8^{\text {th }}$ grade class ready for the May, 2014 HAB flight.

Above: Sequence of video frames showing balloon burst at over $30,000 \mathrm{~m}$ altitude.

