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– Asymmetric boudinage and rotation 
require shear coupling
– EBSD indicates relative rotation of 
staurolite grain is complex in 3-D

• Observed relative misorientations range 
from14 to 65° with an average of 38° 

– Large magnitudes of the observed 
rotation occurred out of the shear plane
– Differential fragment rotations 
 likely resulted from:
 (1) initial grain shape and orientation
 (2) grain shapes which developed 
   as boudinage progressed
 (3) local grain proximity 
   & flow perturbations

– Matrix composed of:
biotite, muscovite, quartz, 
and plagioclase
 • Qz: SPO with poor CPO
– Youngest fabric (S3) 
wraps staurolite grains 
– Staurolite displays 
multiple growth zones and 
internal inclusion fabrics
– Boudin fractures crosscut 
all internal textures 
– Boudinage in most com-
monly asymmetric
 – optical estimates indicate    
   >25°  relative rotation

Figure 3. High local concentrations (white arrows), 
asymmetrical microboudinage (circled areas), and 
tiling (black arrows) of staurolites porphyroblasts.

Figure 4. Foliation surface displaying no clear align-
ment of staurolite porphyroblasts, but several with 
asymmetrical boudinage of twinned crystals (circled 
areas); shear is in plane of photograph.

– Cm-scale staurolite porphs
– Boudinage of elongate and 
twinned grains of staurolite 
– High local concentrations 
of porphyroblasts
– No clear preferred orienta-
tion of staurolite grains

– Study site (star in Fig. 1B) located in 
Appleton Ridge Formation, a member 
of the Fredericton Belt lithotectonic unit
  • metaturbidite sequence
  • rich in andalusite and staurolite
– Regional Silurian-Devonian orogen-
esis coincident with a protracted history 
of plutonism, metamorphism, and 
ductile deformation 
– Latest fabric reflects shear at high 
temperature low pressure conditions
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– Observations above (see section IV) indicate 
shear, rotation, and viscous coupling
– Models used to test the in�uence of micro-
structural and rheological variation on bulk 
strength and inclusion-matrix shear coupling
– Calculations utilized ELLE (Bons et al., 2008), 
Basil (Houseman et al., 2008), and the 
following equation:

– Microstructural analysis indicates that formerly continuous staurolites grains boudinaged 
and rotated relative to one another synchronous with bulk non-coaxial shear in the matrix
– Relatively minor microstructural variations of rheological heterogeneity results in 
heterogeneous distributions of kinematic parameters, localization, and non-ideal rotational 
behavior of rigid porphyroblasts  
– The bulk strength of porphyroblastic rocks is dependent on the microstructural distribution 
and spatial proximity of rheologically distinct fabric elements
– Our analyses suggest that inherent microstructural and rheological heterogeneity can 
affect interpretations of the kinematic vorticity number that are derived from porphyroblast 
grain or internal inclusion-trail orientations (e.g., Passchier, 1987)

Fragments
A, B, C, D and E

Fragments
G,F, and H

– Porphyroblast bearing rocks may be relatively strong (e.g., Groome and 
Johnson, 2006) 
– Or, given weak material proximal to porphyroblasts (e.g., mica) these rocks 
may be relatively weak (e.g., Johnson et al., 2009) 
– Such microstructural and rheological heterogeneity can also in�uence 
the partitioning of strain, thus a�ecting the kinematic behavior of 
porphyroblasts
– It is unclear how variation in microstructural distributions of rheologically 
distinct fabric elements a�ects the bulk strength and kinematic behavior of 
porphyroblasts
 • i.e., little is known about how rheological heterogeneities that a�ect bulk strength relate    
  to those that a�ect porphyroblast-matrix coupling
–» To investigate these complexities we utilized a well-preserved kinematic 
record of boudinaged staurolite porphyroblasts and supplementary �nite 
element numerical models.

τxy

(∂Ux/∂y)v
ηbulk = ; (∂Ux/∂y)v = 1

– Threshold for bulk weakening (i.e., ηb≤1) is relatively discrete (ηm/ηw=2.8-5.5) 
for all weak domain distributions
– Bulk strength depends on proximity of weak and strong domains, particularly 
with large competancy contrasts
– Inclusion vorticity depends strongly on the spatial proximity and relative 
strength of weak and strong domains
 • kinematic decoupling occurs at: ηm/ηw≈2.5-5 (proximal) ηm/ηw≈15-20 (int. to distal)
– The threshold for bulk weakening (i.e., ηb≤1) does not coincide with 
kinematic decoupling
 • i.e., bulk weakening does not equate to kinematic decoupling of porphyroblasts
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Figure 1. (A) Generalized lithotectonic map of the Northern Appalachians; arrow 
marks the location of B. (B) Geologic setting of the study area (star); after Hibbard 
et al. (2006) and Gerbi & West (2007).   All faults except the Sennebec Pond fault 
likely originated as shear zones. NFS=Norumbega fault system.
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Figure 2. Annotated �eld photographs displaying general outcrop scale features of 
the study area. (A) Outcrop view of porphyroblastic schists interbedded with thin 
psammitic layers that are largely planar in outcrop (photo courtesy of D.P. West). (B) 
Asymmetrically sheared quatrz pod bearing large pink andalusite, which displays a 
dextral shear sense; transit book is 12cm top to bottom.
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Figure 6. Criteria used for optical correlation of boudi-
naged staurolite fragments. (1) Chie�y monomineralic 
zones between staurolite fragments. Zones exhibit large 
grain sizes relative to and sharp boundaries with the 
matrix. (2) Matching fracture patterns at fragment mar-
gins. (3) Internal inclusion fabrics (black dotted lines) 
and/or growth zones. (4) Remnant penetrative twin 
intersections (outlined in white dotted line). 

Figure 5. Annotated photomicrographs of 
Appleton Ridge Formation samples. A) Staurolite 
δ- clast displaying dextral shear sense, planar 
inclusion texture, and a garnet inclusion. B) Elon-
gate staurolites displaying asymmetric boudi-
nage. Bt=biotite, Grt=garnet, Ms=muscovite, 
St=staurolite, Qz=quartz.

 Figure 7. (A) Schematic representation of geometries and viscosity distributions 
used in the sensitivity analysis. (B) Geometric representation of dimensionless bulk 
e�ective viscosity calculation method. Model output includes the shear traction 
necessary to perform the deformation and the instantaneous distribution of kine-
matic parameters (after Gerbi et al., 2010).              


