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Comparing Geodetic & Geologic Rates

• Strain analysis

• Nothing more than the gradients in the 
displacement/velocity fields

• Good for regional analysis, not so good for 
individual faults

• Elastic block modeling

• Based on active fault maps

• Provides a prediction of fault slip rates

• Faults can only terminate against other faults



Calculating Strain from a Displacement Field

displacement position

displacement 
gradient tensor

In 1D, eij is just the extension:

e = Δu
ΔX

=
l final − linitial
linitial

ui= ti+
∂ui
∂Xj

Xj= ti+eijXj



Strain From Displacement Vectors

1D Transect
rotate coordinate system so it parallels the mean vector

vectors from Klotz 
et al (1999)



Strain From Displacement Vectors
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Strain From Displacement Vectors

but, there are gradients ⊥ to the transect, too!

these secondary gradients 
often explain why major 
structures are not ⊥ to 
displacement vectors



The Inverse Problem
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n ≥ 3 (in 2D)
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Strain From Displacement Vectors

1.2×10–5
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magnitude

2D — Delaunay Triangulation

hz. extension axis

range from 1D transect:
5×10–6 to 4×10–7



Calculate a regularly-spaced velocity 
gradient field from irregularly spaced data

Strategy 1: Nearest Neighbors (e.g., n = 4)

each grid node has different spatial significance!



Strain From Displacement Vectors
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extension 
magnitude

2D — Nearest Neighbor Least Squares
n = 6

hz. extension axis
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spatial variation is smoothed out

• all stations used in 
calculation for each grid 
node

α • contribution of each station 
weighted by distance from 
node

Calculate a regularly-spaced velocity 
gradient field from irregularly spaced data

Strategy 2: Distance Weighted (Shen et al., 1996)

m= GTWG⎡
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• use a weighted least 
squares solution (Menke, 
1984):
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Strain From Displacement Vectors
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2D — Distance Weighted

hz. extension axis
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Strain & 
Faulting



Strain & 
Faulting

Interseismic

what is really happening what the GPS network sees



Strain & 
Faulting

Interseismic

Complete Cycle

what is really happening what the GPS network sees



Interseismic and Long Term Strain

• Geodetic strain during the interseismic part of 
the seismic cycle should match the long term 
geologic strain (where networks cross major 
faults)

• Need very dense networks to differentiate 
between creeping faults and those that are 
locked interseismically
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Subandean GPS Interseismic Strain Rate
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e = Δv
ΔX

= −32.6 ±1.1×10−9 yr−1



Subandean Balanced Section

8.5 Ma
7.5 Ma
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                       Gaussian	
 Maximum
  Shortening:	
 49.58	
	
 ± 18.71	
 90.48

Shortening percent:	
 38.39   	
 ±   8.97	
 43.76

Error

Echavarría et al. (2003)
Judge & Allmendinger (2011)

Geology: –38.4 ± 9 × 10–9 yr–1 for 10 Ma
GPS:       –32.6 ± 1.1 × 10–9 yr–1 for 10 yr
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Interplate Seismicity Since 1900
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Northern 
Chile cGPS
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Coastal Cordillera near Antofagasta

Antofagasta

Mejillones 
Peninsula



Caleta Herradura—Mejillones Peninsula



Crack Network at Mantos Blanco

500 m





Crack in Bedrock



Coseismic Cracks

1995 M8.1 Antofagasta Earthquake



Crack Study 
Areas

û

û

û

û

19°

20°

21°

22°

23°

24° 70° 69°

50 0 50 100 km

Punta de 
Lobos

Mititus
2007 Mw7.7 

Tocopilla 
aftershocks



Coseismic Cracks — M7.7 Tocopilla 2007



Tocopilla Earthquake — Crack Reactivation

photo by Gabriel González



Mititus Area — Northern Part
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Coseismic Geodetic Strain & 
Crack Strain

Baker et al. (submitted)
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Crack Study 
Areas
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Punta de Lobos Fan



~800,000 yr surface

~200,000 yr surface
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Estimating Crack Opening

width at ½ 
the depth
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Estimating Crack Width
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Strain Rates due to Cracking
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Interplate Seismicity Since 1900
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Coseismic Geodetic Strain & Crack Strain
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How much “elastic” rebound is permanent?

• Permanent crack strain is same order of 
magnitude as geodetic strain

• For a single event (Tocopilla 2007), 
permanent crack strain accounts for at very 
least ~15% of geodetic strain

• Both cracks and GPS sample the surface 
strain

• Implications for Reid model elastic rebound



Interseismic
Coseismic
Block
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elastic effects → Block Model

Block interactions 
described by rotation 

about Euler poles

Interseismic elastic block modeling
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Elastic block modeling: Velocity decomposition

Interseismic = Block – Elastic – Subduction
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Estimated strike-slip rates
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Estimated strike-slip rates
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Fault slip through time: MTL
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Fault slip through time: ISTL
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Geodetic vs. geologic slip rates worldwide
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Consistency in deformation through time

• Examples of remarkable consistency in style and rate 
over times scales 10 yr – 10 Myr

• Discrepancies in rates bring about interesting 
questions:

• Changing fault system geometry

• Shifting locus of deformation

• Transient rheologies

• “Retrograde” coseismic deformation

• Anomalous individual events that deviate from 
“average” behavior

• Elastic models are at best generalizations and slip 
models derived from them represent average 
behavior



Integrating geodesy and geology in courses

• Geodetic observations record active tectonics — discuss 
current events, newly formed/activated structures

• Geologic observations are of the end product of 
deformational processes

• Strain rate calculations are subject to length-scale issues 
and are better suited to interpreting regional 
deformation rather than individual fault processes

• Elastic models — for determining slip rates, slip areas, 
interseismic coupling, etc. —  are oversimplified but often 
do a good job at interpreting geodetic observations

• Geologists can document the actual mechanisms by 
which geodetically observed strain occurs

• Big remaining question: how to integrate the seismic 
cycle over time to produce mountains?



Possible activities

• Calculate 1-D velocity gradients “by hand”

• Use StrainSim to calculate 2-D strain

• Compare patterns of 2-D strain with patterns of 
faulting

• Compare dilitation with uplift/subsidence

• Compare relative magnitudes of strain with 
published fault slip rates

• Compare principal strain axes with fault 
orientations

• Fit fault-parallel GPS velocities with screw 
dislocation model to estimate slip rate and locking 
depth


