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Notes to the Instructor and Reviewer

The attached handout is for a structural geology laboratory that introduces students to basic concepts of strain analysis in 
structural geology. Many basic concepts are not presented in the handout, as they are covered in the text. Mainly new 
concepts are discussed, including an analytical solution to the Wellman digram and hyperboloidal projections, of which 
familiar Elliott and Rf-Φ diagrams are a subset. This latter allows a new way of thinking about strain graphs as projections. 
Teaching is done interactively using the program EllipseFit 2.

Note that this material is new, and my handout is very rough. The new concepts are currently only published as abstracts 
(see references) and are in preparation for publication, so please respect them as such. The program EllipseFit 2 is an 
update of EllipseFit 1 written in the 1980's, which in turn was based in part on programs beginning in the 1970's under W.D. 
Means. EllipseFit 2 has been entirely updated, using current, as well as new unpublished techniques. It is designed as an 
integrated package to include  necessary techniques required for advanced field studies, through 3D ellipsoid fitting, but  
also for interactive use with undergraduate students in a structural geology laboratory.

Any use of this material should be acknowledged. Note that much of this material is still in preparation for publication. 
References are below for analytical solution of the Wellman dagram (Vollmer 2011a), comparison of strain analysis methods  
(Vollmer 2011a), automatic hyperboloidal contouring (Vollmer, 2011b), and the EllipFit program (Vollmer, 2010). 
Reference to the contained material should be similar to: 

Vollmer, F.W., 2012. Strain Analysis and Hyperboloidal Projections. Teaching Structural Geology, Geophysics, and 
Tectonics in the 21st Century. On the Cutting Edge  (https://serc.carleton.edu/NAGTWorkshops/structure/SGT2012/).
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Strain Analysis 

Goals and Objectives

Structural geologists use numerous tools to unravel the 
deformation history of rock bodies, from thin sections to 
mountain belts. An important area of study is the determination of 
strain at various scales. Our first goal is to learn some common 
two-dimensional techniques for this. In order to do this on natural 
materials, various assumptions must be made; a second goal is to 
understand these assumptions. Generally, it must be assumed that 
the rock has some characteristic that defined a circle in the 
undeformed state, and an ellipse in the deformed state. Figure 1 
shows the approximations of grains from an oolitic limestone as 
ellipses after deformation, and their assumed state after 
unstraining using the calculated strain. An assumption in this case 
is that the ellipses before deformation, when averaged, gave a circle. This section 
gives a brief summary of three techniques, which derive strain from, respectively: 
points, lines and ellipses. 

In the following section, on hyperboloidal projections, we discuss projections to 
display  two-dimensional strain data using methods analogous to the spherical  
projections studied earlier. All figures except 5 and 7 were created with EllipseFit 
(Vollmer, 2010). 

Center-to-Center Methods

Center-to-center methods are commonly referred to as the Fry method, but include 
variations on the basic technique (Fry, 1979; Ramsay and Huber, 1983; Erslev, 
1988; Erslev and Ge, 1990). These consider distributions of points, particle centers. 
Figure 2 shows examples of these graphs created using EllipseFit. Center-to-center 
methods assume that the points are anticlustered, which means that in the 
undeformed state each particle's center, on the average, will be the same distance 
from an adjacent particle's center. This condition is generally reasonable in 
sandstones made up of well-rounded equidimensional grains, although three-
dimensional packing must be considered. Other candidates for this type of analysis 
include, for example, porphyritic igneous rocks in which nucleation is controlled by 
chemical potential, giving equally spaced phenocrysts. 

Wellman Method

The Wellman method can be applied to objects in which initially perpendicular lines 
can be identified, such as brachiopod hinge and medial lines (Wellman, 1962). For 
brachiopods not parallel to a principal strain, this angle will be distorted by shear 
strain. Wellman's graphical technique is illustrated in most structural geology 
laboratory manuals (e.g., Ragan, 2009). An analytical solution (Vollmer, 2011a), is implemented in EllipseFit. 

Figure 1. Deformed and undeformed ellipses from ooid 
grains.

Figure 2. Center-to-center graphs, 
including Fry, normalized Fry, and 
enhanced normalized Fry, and with 
best-fit ellipse.



Eigenvectors and Numerical Methods

Strain ellipses are commonly given by the axial ratio, R, and angle from the x-axis, 
ϕ. If we consider a population of such ellipses, then an “average” or “best-fit” 
ellipse is desired. As we previously discussed, such “best-fit” values can be found 
using eigenvectors. A standard technique for determining the a best-fit strain ellipse 
from a set of ellipses uses shape-matrix eigenvectors (Shimamoto and Ikeda, 1976). 
Two related methods are mean radial length (Mulchrone et al., 2003), and 
hyperboloidal vector mean (Yamaji, 2008). These are each implemented separately 
in EllipseFit, however the calculation in each case gives identical results (Vollmer, 
2010). Calculation of the three-dimensional strain ellipsoid can also be done using 
eigenvector methods (Shimamoto and Ikeda, 1976; Shan, 2008). Shan's method 
(Shan, 2008) is implemented in EllipseFit. 

Hyperboloidal Projections
Yamaji (2008) provided a unifying parameter space for two-dimensional strain by 
applying concepts from hyperbolic geometry. This parameter space suggests new 
techniques for strain analysis, including the use of hyperboloidal equal-area and 
stereographic projections, and contouring of strain data on the unit hyperboloid, 
similar to techniques for contouring orientation data on a unit sphere (Vollmer, 
2011b). Properties of standard strain graphs, such as the Elliott polar graph (Elliott, 
1970) and the Rf-Φ graph (Dunnet, 1969), can be understood in terms of 
hyperboloidal projections, and it allows construction of automated reproducible 
contours for descriptive statistical analysis (Vollmer, 2011b).

Figure 4 shows examples of hyperboloidal projections, including the Elliot graph, 
an equidistant azimuthal projection (Figure 4a), hyperboloidal stereographic 
projection (Figure 4b), and an Rf-ϕ graph, a cylindrical projection (Figure 4c). 
These are shown in strained (R = 4) and unstrained states.

Azimuthal Hyperboloidal Projections

Azimuthal hyperboloidal projections are projections of the unit hyperboloid onto a 
plane (Figure 5). The origin of hyperboloidal is C = (1, 0, 0)T, which corresponds to 
a strain of R = 1. In these projections azimuths, which correspond to values of 2ϕ, 
are preserved. The distance from the center of the azimuthal projection is a function 
of R, and strain is a rotation on the hyperboloid.  

The equidistant hyperboloidal projection (Figure 4a and 6a) preserves distance radially. so the natural strain magnitudes, ϵ = 
1/2 log R, are undistorted. Note that because of this property contour lines are distorted, but remain approximately 
concentric with increasing strain. The equal-area hyperboloidal projection (Figure 6c), in contrast, preserves area, but 
distorts ϵ. By analogy with spherical equal-area projections, this is useful for comparing relative densities of strain data sets. 

The stereographic (equal-angle) hyperboloidal projection (Figure 4b and 6b) 
preserves angles, and hyperbolic curves plot as circles (Reynolds, 1993). Curves of 
equal distance from the origin are circles and, as distance on the hyperboloid is 
invariant with strain (strain is a rotation), the circles remain circles with strain. For a 
radially symmetric distribution, the centroid (planar average point) of the projected 
data plots at the same location as the best-fit ellipse. 

The centroid of the projected data coincides with the best-fit strain ellipse only in 
the unstrained state, and on the stereographic projection. On other projections the 
centroid is not a good estimator of the applied strain. In evaluating strain ellipse 
data sets, the symmetry of the distribution is an important characteristic (Elliott, 
1970; Dunnet and Siddans, 1971). Automatic contouring of the data gives an 
unbiased view of densities and symmetries. The equal-area projection provides an 
undistorted view of data density, while the equidistant projection maintains radial 

Figure 4: Hyperboloidal projections of 
strain data. See text for discussion.

Figure 5. Principle of azimuthal 
hyperboloidal projections.

Figure 3: Concept of the Wellman 
method, with analytical solution.



symmetry. The stereographic projection has the useful property that circular contours remain circular with strain, allowing a  
simple visual test for bimodal or multimodal prestrain fabrics (Vollmer, 2011b).

Cylindrical Hyperboloidal Projections

Cylindrical hyperboloidal projections project the unit hyperboloid onto the surface of a cylinder, which is then “unwrapped” 
and viewed on a plane (Figure 7). Figure 8 shows several examples, including equidistant, or logarithmic Rf-Φ (Figure 8a), 
and exponential, or linear Rf-Φ. Rf-Φ graphs (Figure 8c) which are widely used in strain analysis (e.g., Ramsay and Huber,  
1983). Understanding them as hyperboloidal projections unifies the various strain graphs, and allows unbiased automatic 
contouring of data.

By analogy, recall that a Mercator projection is a cylindrical projection of a sphere. On a Mercator projection of the earth,  
each pole maps to a line, causing distortion at high latitudes. Similarly, a strain of R = 1, which plots at the hyperboloidal 
origin C, maps to a line, causing distortion at low strain values, and the centroid in not well correlated with the strain.

Figure 8 shows cylindrical hyperboloidal projections of initially uniform distributions to R = 2 and R = 4. Compare to 
Figure 6, which shows the same data on azimuthal projections. Note that the contours are identical for equal values of strain 
in the two diagrams, as they are calculated on the hyperboloid, changes in shape are due only to properties of the projection.
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