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V. AGE OF DEFORMATION FROM  AGE VS. % 2M1 PLOTS (YORK REGRESSION)
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VI. U-Th/Pb AGE OF MONAZITE 

VII. ILLITE AND WATER ACTIVE DURING DEFORMATION

The rich isotopic memory of illite; an example of clay dating 

and fluid fingerprinting from the Zimapán Basin in Central Mexico

Besides vein-forming minerals such as quartz and calcite, clay minerals are one of a few species that grow during 

deformation in the upper crust. Among the family of clay minerals, illite contains a particularly rich isotopic memory 

that can be applied to a variety of geologic studies. Illite contains potassium, a radioactive element that can be used 
-to obtain the age of deformation through Ar-Ar dating. Illite also contains structural water (OH  ions in the octahedral 

2 18layer), which, through δ H or δ O analyses, can provide information on the source(s) of the fluids present during 

deformation. Finally, illite contains boron in its structure, which provides independent information on the nature of the 

fluid(s) that were active during deformation and/or ambient temperature conditions.

In order to understand the mechanisms and significance of illite crystallization during folding, a structural, textural 

and isotopic study was conducted on rocks of the well-exposed and well-preserved Zimapan Basin of Central 

Mexico. This now-inverted basin contains a succession of Cretaceous deep-water marine carbonates, which were 

strongly folded during the Late Cretaceous. Structural observations identify two shortening events in these rocks 

(tight folds refolded in spaced open folds and two generations of axial plane cleavage). SEM analysis of shales that 

were sheared parallel to bedding during flexural folding, show that illite grains grew parallel to cleavage. Based on 

Ar-Ar illite age analysis (IAA) of neocrystallized clays these events are constrained to have occurred at 80-84 Ma 

and 75-77 Ma. New in-situ U-Th/Pb ages from monazite included in calcite and quartz from syntectonic stretching 
2veins agree within uncertainty of the Ar-Ar data, supporting the robust nature of the IAA.  δ H analyses of both illite 

and fluid inclusions trapped in syntectonic veins show that they grew in isotopic equilibrium with pore water that was 

a mixture of marine and meteoric sources, reflecting a combination of fluid re-cycling marine water meteoric water 

infiltration during basin inversion and regional deformation. 
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CONCLUSIONS 
Structural and geochronological data are in good agreement with the rocks of the Zimapán Basin 

being deformed in two episodes of shortening at 80-84 Ma and 75-77 Ma.

Hydrogen stable isotope signatures of illite and  U-Th/Pb ages of monazite support the idea of 

illite formationduring folding.
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