EVALUATING THE EFFECTIVENESS OF FLINN'S K-VALUE VERSUS LODE'S RATIO
Matty Mookerjee
Sonoma State Geology Department, Sonoma State University, Rohnert Park, CA

ABSTRACT

Lode's ratio (v) and Flinn's k-value are the most commonly used arameters for characterizing the shape of ellipsoids. Both parameters characterize this shape by utilizing ratios of the lengths of the principal axes. For oblate, plane strain, and prolate ellipsoids, here is an exact relationship between k and v; however, this is not rue for any other ellipsoid. In fact, as k approaches zero and infinity, the possible range in v is 1.0, i.e., 50% of its total range. Correspondingly, as v approaches zero from either the right or the left, the possile range in k is 50% of its total range.
Given the inherent differences between k and v, we use synthetic datasets as a means of comparing the relative effectiveness of the emonstrated a largely strain shape-independent set of stand demonstrated a largely strain shape-independent set of standard
deviations whereas the k-value datasets were significantly dependent on both strain shape and magnitude. Furthermore, the geometry of the confidence regions within the Flinn diagram are very much strain regime dependent, making it difficult to compare within datasets that have a range of k-values. In lieu of these results, we encourage investigators to more critically evaluate their choice of ellipsoid shape parameter.

Figure 1.a) a typical Hsu diagram with representative strain ellipsoids, b) a Flinn

 diagram with k-value and octatanedral 1 hearas strain ($\left(s_{s}\right.$ contours shown with and d) a Flinn diagram with Lode's ratio contours.$$
\begin{aligned}
& \text { Octahedral shear strain }\left(\varepsilon_{s}\right. \text { contours in Flinn space are calculated } \\
& \text { using the following formula: } \\
& y=\mathrm{e}^{\frac{1}{2}\left(\operatorname{Ln}\left[\frac{1}{x}\right]+\sqrt{3} \sqrt{2 \varepsilon_{5}^{2}-\operatorname{Ln}\left[\frac{1}{x}\right]^{2}}\right)} \\
& \text { where } x \text { has arange from } 1 \text { to } \mathrm{e}^{\sqrt{\frac{3}{2}} \varepsilon_{5}} \varepsilon_{5}
\end{aligned}
$$

Figure 2. A logarithmic Flinn diagram/Ramsay diagram illustrating Ramsay and Huber's (1983) D- and K-value contours along with octahedral shear strain $\left(\varepsilon_{\mathrm{J}}\right.$ contours.

figure 3 . An illustration of the relationship between Flinn's k-value, Lode's ratio (v), and octahedral shear strain (ε_{δ}, for a) constrictional strain geometries, and b) flattening strain geometries.

Flinn's k-value versus Lode's ratio

Figure 5. Sectional data from a seed ellipsoid generated by the program "Sectional Data through an Ellipsooid.nb" from the "Geological Programs for Mathematica" software suite (Mookerjee \& Nickleach
2011). a) the sectional plane orientations used to generate the synthetic datasests cutting through an example ellipssid with an octahedral shear strain $\left(\varepsilon_{s}\right)=1$, Lode's ratio $(v)=-0.5$, and Flin's
k--alue $=4388$, exalue $=4.378, b)$ elliptical sections from the example ellipsoid from which the synthetic data (axial
ratios (Rf) and angular orientaions

Figure 6. a) Standard deviations of Lode's ratio (ov) and Flinn's k-value (ok) plotted against the corresponding value of general flattening Lode's ratio (v) and Flinn's k-value for given octanedral shear strains ($\left(\varepsilon_{s}\right.$. The standard deviations are all calculated from synthetic datasets of one hundred ellipsoids, b) Standard deviations of Lode's ratio (ov) and

Figure 7. Three-dimensional strain data from the deformed footwal quartzites beneath the Moine Thrust, NW Scotland (Mookerjee \& Mitra
2009). The shaded regions surrounding each data point repesesents the 2009). The shaded regions surrounding each data point represent
95\% confidence area suning the statistical methods sdescribed in
Mookeriee \& Nickleach Mookeriee \& Nickleach (2011).) al Hsu diagram, and b) Flinn diagram
Men

CONCLUSION

Three-dimensional strain analysis is a crucial part of structural geology. In order to effectively discuss 3 3. strain datasets we need parameters that can characterize the amoun of distortion (i.e., strain magnitude) of the strain elipsoid, as
well as the strain shape. Both Lode's ratio and Flinn's k-value have been utilized to good effect in characterizing strain shape. However, the choice of shape parameter is typically under-evaluated. To investigate this issue of the effectivenes of these two strain shape parameters, we determined a precise functional relationship between k, v, and ε_{s}, and analyzed synthetically-derived strain datasets over a variety of strain regimes. Because the standard deviations of Lode's ratio were far more consistent than the corresponding standard devat v is the more effective strain shape parames, we sugges kinematic analyses in which there is a range of strain geometries. This is not to say that v is always the best strain shape parameter, just the most consistent. Moreover, the Hsu diagram more consistently represents the confidence regions,
within the strain geometry space, for all strain regimes. We within the strain geometry space, for all strain regimes. We
hope that the above analysis gives investigators the tools necessary to more easily make informed decisions about which parameter best suites their specific needs.

