
U-Pb Geochronology Practical: Background 
 
Basic Concepts: 
accuracy: measure of the difference between an experimental measurement 

and the “true” value 
precision: measure of the reproducibility of the experimental result 
random error: unpredictable fluctuations in observations that yield results that 

differ from experiment to experiment 
systematic error: errors that cause the measurement to differ from the “true” 

values with reproducible discrepancy 
 

Sample versus Population 
A sample is a group of data which is a subset of an infinite population. 
population distribution: the “true” distribution of values of a given quantity 
sample distribution: the measured distribution of those values; in the limit of 

infinite measurements, the sample distribution approaches the parent 
distribution 

How do we describe the sample versus population distributions? Often with 
concepts like the mean, the variance, and the standard deviation. 
 
Parametric statistics 
The mode is the most probable 
value of x 
 
The median (x1/2) is the value for 

which half the observations 
are greater and half less 

 
The mean (x) is the average value 

of a quantity x 
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The deviation (di) of a measurement xi from the mean µ of the parent 
distribution is the difference between xi and µ 
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The average deviation, α, is the (in the limit of infinite measurements) the 
average of the absolute values of the deviations from the mean µ … but the 
absolute value is computationally inconvenient… 
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The variance, σ2, is (in the limit of infinite measurements) the average of the 
squares of the deviations from the mean µ 
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The standard deviation, σ , is (in the limit of infinite measurements) the square 
root of the variance; the standard deviation estimates the likelihood of a 
measurement falling within a certain interval about the mean: 
 

€ 

σ = σ 2 (sample)   

€ 

s = s2  (population) 
 

The standard error of the mean is a measure of how well the sample mean, x, 
estimates the population mean, µ … it does not represent the same thing as the 
standard deviation!  It is calculated from the standard deviation divided by the 
square root of the number of measurements: 
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Note that as n approaches infinity, the standard error approaches zero, e.g. the 
sample mean must approach the population mean. 

 



Distributions 
Recall that a histogram is a graph of the frequency of binned measurements; 
the apparent shapes of distributions illustrated in histograms are highly sensitive 
to the choice of bin size… 
A probability density function appears as the smooth curve over the columns 
of a histogram, in the limit of infinite measurements. The shape of the probability 
density function is independent of the choice of bin size, and thus always “looks” 
the same unlike associated histograms. 
The most commonly observed (or assumed) distribution in science and 
engineering is the Gaussian or normal distribution, which is the symmetric 
bell-shaped curve arising when the number of different possible outcomes is 
infinite but the probability of each is finite: 
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This equation yields the unit normal distribution; the integral under the curve is of 
unit area (=1).  It can be subsequently scaled to n measurements. 

 



Confidence Intervals 
The probability that a measurement will differ from x by some amount Δx is 
called the confidence interval; it is simply the area under the unit probability 
density function, bound by ±Δx: 
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For a Gaussian probability function,  

 If Δx = σ , then AG = 0.68269 ~ 68% … the “1σ confidence interval” 
 If Δx = 2σ , then AG = 0.95449  ~ 95% … the “2σ confidence interval” 
 

 
Schoene et al. (2013) 

 

Note that in high-precision geochronology the tradition is to tabulate and illustrate 
analytical data with their 2σ (95%) confidence interval uncertainties.  
By contrast, in situ geochronological methods (ion probe, LA-ICPMS) traditionally 
illustrate their data with 1σ (68%) confidence interval uncertainties, e.g.  



Constructing Probability Functions (and Histograms) 
 
Two approaches: 
1) Assume that the total sample distribution can be modeled as a specific 
probability density function. Then, the area under a normalized probability density 
function is made equal to the area of the equivalent histogram. For example: 

a) Calculate the unit Gaussian probability function from the appropriate eqn. 
b) Normalize the probability function (Pg) by:  
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y(xi) = PG (xi)∗ nΔx  

 
2) Assume that each measurement has a normally distributed uncertainty with a 
known variance.  Then you can assign a unit Gaussian curve to each 
measurement, and then sum all these up along the x-axis.  Again the area under 
the probability density function is equal to the area under the histogram.  The 
benefit of this approach is that it can handle non-uniform variances for each 
observation. 
 
Weighted Mean and Variance 
Following from the idea that the individual observations within a sample may 
have non-uniform variance, it is common to weight each observation by the 
inverse of its variance when calculating the mean of the sample distribution: 
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The standard error of the weighted mean decreases with the number of 
measurements. 
 



Statistical evaluation of the best-fit solution 
How do we evaluate how well a best-fit solution, in this case the weighted mean 
of a normal distribution, describes our data distribution? 

We can define our goodness-of-fit parameter, χ2, as the sum of the squares of 
the deviations of our observations from our model mean value, weighted by the 
variances of those observations: 
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In geochronology, we have a tradition of normalizing the χ2 statistic by the 
degrees of freedom of the system to derive the Mean Squared Weighted 
Deviation or  MSWD (e.g. Wendt and Carl, 1991). This statistic quantifies the 
extent to which data scatter from the best-fit solution beyond stated uncertainties. 
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ƒ is the degrees of freedom of the model, e.g. the number of experimental 
parameters (measurements) – number of model parameters (unknowns) 
 
The expectation (mean) value of the MSWD is 1, in other words: 

1) MSWD = 1… scatter of data about the model is accurately described by 
analytical uncertainty 

2) MSWD >> 1… scatter of data about the model is beyond analytical 
uncertainties; the model is a poor fit to the data or the experimental error 
is underestimated 

3) MSWD << 1… scatter of data about the model is much less than the 
analytical uncertainty; experimental error is probably overestimated 

 
Wendt and Carl (1991) established the frequency distribution of the MSWD about 
the mean value of 1, as a simplified function of ƒ: 
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