Phase Diagrams

F:IDP_DatalCourses|320|fall2010linclassl1810-PhaseDiagrams-Answers.wpd; April 12, 2011 (11:43am)

Question Answers

1. A tough question. The answer is that if minerals always reacted to equilibrium, there should be no diamond or sillimanite for us to look at. But, some minerals persist even if they are thermodynamically unstable. We term such minerals metastable.
2.

corundum +H 2 O stable together on or to right of reaction line
3. Most of the possible assemblages are stable except that any assemblage that contains sillimanite cannot also contain Py + Di.
4. To answer this correctly, you must consider the reaction coefficients. (They are all 1
except for the 3 Q in reaction 1.)

Assemblage $\#$	Minerals (and amounts) in Field A	Minerals (and amounts) in Field B	Minerals (and amounts) in Field C
1	3 moles of pyrophyllite	$3 \mathrm{Ky}, 9 \mathrm{Q}, 3 \mathrm{H} 2 \mathrm{O}$	$3 \mathrm{Ky}, 9 \mathrm{Q}, 3 \mathrm{H} 2 \mathrm{O}$
2	2 moles of pyrophyllite 3 moles of quartz	$2 \mathrm{Ky}, 9 \mathrm{Q}, 2 \mathrm{H} 2 \mathrm{O}$	$2 \mathrm{Ky}, 9 \mathrm{Q}, 2 \mathrm{H} 2 \mathrm{O}$
3	1 mole of pyrophyllite 1 mole of muscovite	$1 \mathrm{Ky}, 3 \mathrm{Q}, 1 \mathrm{H} 2 \mathrm{O}, 1 \mathrm{Ms}$	$2 \mathrm{Ky}, 2 \mathrm{Q}, 2 \mathrm{H} 2 \mathrm{O}, 1 \mathrm{Ksp}$
4	1 mole of pyrophyllite 3 moles of muscovite	$1 \mathrm{Ky}, 3 \mathrm{Q}, 1 \mathrm{H} 2 \mathrm{O}, 3 \mathrm{Ms}$	$4 \mathrm{Ky}, 4 \mathrm{H} 2 \mathrm{O}, 3 \mathrm{Ksp}$
5	1 mole of pyrophyllite 5 moles of muscovite	$1 \mathrm{Ky}, 3 \mathrm{Q}, 1 \mathrm{H} 2 \mathrm{O}, 5 \mathrm{Ms}$	$4 \mathrm{Ky}, 4 \mathrm{H} 2 \mathrm{O}, 2 \mathrm{Ms}, 3 \mathrm{Ksp}$

5. There are 5 phases total, each reaction is missing 1.

missing	included	reaction
(Ka)	$\mathrm{Py}, \mathrm{Q}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Ky}$	$\mathrm{Py}=\mathrm{Ky}+3 \mathrm{Q}+\mathrm{H}_{2} \mathrm{O}$
(Ky)	$\mathrm{Py}, \mathrm{Q}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Ka}$	$\mathrm{Ka}+2 \mathrm{Q}=\mathrm{Py}+\mathrm{H}_{2} \mathrm{O}$
$(\mathrm{H} 2 \mathrm{O})$	$\mathrm{Py}, \mathrm{Q}, \mathrm{Ka}, \mathrm{Ky}$	$2 \mathrm{Py}=\mathrm{Ka}+5 \mathrm{Q}+\mathrm{Ky}$
(Q)	$\mathrm{Py}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Ka}, \mathrm{Ky}$	$3 \mathrm{Ka}=\mathrm{Py}+2 \mathrm{KY}+5 \mathrm{H} 2 \mathrm{O}$
(Py)	$\mathrm{Q}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Ka}, \mathrm{Ky}$	$\mathrm{Ka}=\mathrm{Ky}+\mathrm{Q}+2 \mathrm{H} 2 \mathrm{O}$

6. 5 . There are 5 phases total, each reaction is missing 1.

missing	reaction
(Gr)	$\mathrm{An}=\mathrm{Ky}+\mathrm{Wo}$
(Q)	$\mathrm{An}=\mathrm{Ky}+\mathrm{Wo}$
(An)	$\mathrm{Gr}+\mathrm{Q}=\mathrm{Ky}+3 \mathrm{Wo}$
(Wo)	$3 A n=\mathrm{Gr}+2 \mathrm{Ky}+\mathrm{Q}$
(Ky)	$\mathrm{Gr}+\mathrm{Q}=\mathrm{An}+2 \mathrm{Wo}$

Two of the reactions are the same. The one missing (gr) is also missing (Q). This is called a degenerate situation. It arises because the three minerals (An, Ky, Wo) can be described using a 2-component system (Al2SiO5-CaSiO3). There is no need for a thrid component so a reaction can be balanced with only three phases.
7.

Co: everywhere
Zo: A through D
Ge-everywhere
Zo-An: A through D
An-Ge: F and G
Zo-An-Ge: nowhere
Gr-An- $\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ An-Wo-Q: D, E, F, G Gr-Co-An-Ge: line 5
$\mathrm{Gr}-\mathrm{An}-\mathrm{Co}-\mathrm{H}_{2} \mathrm{O}$: E
An-Ge-Wo-Zo: nowhere
Zo-Ky-Co-Gr- $\mathrm{H}_{2} \mathrm{O}$: A
$\mathrm{Gr}-\mathrm{An}-\mathrm{Zo}-\mathrm{Q}-\mathrm{H}_{2} \mathrm{O}$: line 2 An-Co-Gr-Ge-H2O: line 5 $\mathrm{An}-\mathrm{Co}-\mathrm{Gr}-\mathrm{Q}-\mathrm{H}_{2} \mathrm{O}$: nowhere

