Gibbs Free Energies
C:ICourses\320\in-class\04-GibbsE.wpd; August 23, 2003 (11:20am)

formula	mineral/phase	$) \mathrm{G}_{\mathrm{f}} \mathrm{kJ} / \mathrm{mol}$
O_{2}	oxygen	0
Al	aluminum	0
$\mathrm{H}_{2} \mathrm{O}$	water	-237.141
$\mathrm{Al}_{2} \mathrm{O}_{3}$	corundum	-1582.228
$\mathrm{AlO}(\mathrm{OH})$	diaspore	-918.4
$\mathrm{Al}(\mathrm{OH})_{3}$	gibbsite	-1154.889

The graph below provides a convenient way to compare some Gibbs Free Energies in the chemical system $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$.

1. Put tic marks on the top line where the

0
$\mathrm{Al}_{2} \mathrm{O}_{3}$
$\mathrm{H}_{2} \mathrm{O}$ compositions of corundum, diaspore and water plot. Then move down and put dots (clearly labeled) to show the) $\mathrm{G}_{\mathrm{f}}{ }^{\text {for each phase. }}$ Be sure to plot very carefully!

	0
	-100
	-200
	-300
	-400
Gibbs	-500
Energy	-600
of	-700
Formation	-70
(kJ/mol)	-800

2. Draw a line from corundum to water. If diaspore plots below this line, it means that diaspore is more stable than separate water and corundum. Is it? (Note that we cannot do the same graphical analysis for the stability of gibbsite because the reaction of corundum+water to
 gibbsite does not have the same number of moles on each side.)
3. Another way to compare relative stabilities is to consider the Gibbs energies of reactions. Consider the reactions:

$$
\begin{align*}
& \text { corundum + water }=\text { diaspore } \tag{1}\\
& \text { corundum + water }=\text { gibbsite }
\end{align*}
$$

Balance these reactions and use the Gibbs energy values from the table to calculate $) \mathrm{G}^{0}{ }_{\mathrm{rxn}}$ at STP (standard temperature and pressure). Do these values come out to be less than 0 ? If so, diaspore and gibbsite are more stable than separate corundum + water at STP.
4. In the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$ system, there are two other possible chemical reactions involving three phases. List and balance them. Calculate) $\mathrm{G}^{\circ}{ }_{\mathrm{rxn}}$ for each. For each, which is the stable side of the reaction at STP?
5. If a rock that is $100 \% \mathrm{Al}_{2} \mathrm{O}_{3}$, then (considering only the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$ system) it must contain 100% corundum. (There is no combination involving diaspore, gibbsite or water that equals $100 \% \mathrm{Al}_{2} \mathrm{O}_{3}$.)

Suppose, however, you have a rock that is $50 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and $50 \% \mathrm{H}_{2} \mathrm{O}$. You could have any of the following three assemblages: (1) only diaspore, (2) gibbsite + corundum, (3) water + corundum.

Which of these assemblages is most stable at STP? Explain how you concluded this?

