Mole %, Wt. %, Compositions and Projections C:\Courses\320\fall2007\in class\020-Projections.wpd; August 23, 2007 (3:31pm) Consider the minerals/fluids listed in Table 1, at the end of this handout. - 1. Calculate the mole % of each element in each phase and fill in the table. - 2. Calculate the weight % of each element in each phase and fill in the table. (If I were doing this, I would use Excel or Quattro or some other spreadsheet. If you set up the spreadsheet it will save you a lot of button pushing on your calculator. And you will not make errors. But, hey, it's a fee country – do it as you wish.) - 3. Answer question 4 before doing this: For those phases that do not contain water: Plot their compositions on the two triangular diagrams provided later on in this handout, and label the points with the phase abbreviations. One plot uses mole % values, the other uses Wt %. - 4. BUT WAIT! BEFORE YOU DO THE PLOTTING, ANSWER THIS QUESTION: Make a prediction -- What do you think the differences will be between the two plots. Will they be the same? If so, why? If not, will they be completely different? Or, only a little different? Why? Explain. 5. For plotting mineral compositions and thinking about how they compare and mineral reactions, etc., which kind of plot do you think would be most valuable: mole% plots or weight% plots? Why? 6. Under what circumstance would the other kind of plot be useful? 7. Now redo the mole% diagram you just plotted but add the phases that include H_2O as well. The problem is that we now have four components. Must come up with a plan. What to do? Hmmm. BEFORE YOU START PLOTTING AGAIN, PREDICT WHAT YOU WILL FIND. YOU ARE GOING TO MAKE FOUR PLOTS (READ BELOW): WILL THE FOUR PLOTS COME OUT TO BE SIMILAR, DIFFERENT, OR SOMEWHERE BETWEEN? Try plotting the compositions (use mole%) ignoring H_2O . Just add up the other three and *normalize* (multiply by a fudge factor) so they total 100%. Then plot. (The ones you plotted before will not move because they already total 100% – they contain no H_2O .) By ignoring a component, you are creating a *projection*. The idea is that if H_2O (or something else) is unimportant, we can just ignore it for plotting purposes. Try plotting the compositions, projecting from (ignoring) CaO. Try plotting the compositions, projecting from (ignoring) Al₂O₃. Try plotting the compositions, projecting from (ignoring) SiO₂. 8. How do the four plots you just made compare? Very similar, different, close . . . ? Which do you think would be most valuable when considering mineral compositions, reactions, etc.? 9. What do you think about using projections to plot 3-D compositions on a 2-D piece of paper? Is this useful, misleading, hairy, fun, etc.? Discuss, briefly. Mole % ==> SiO_2 Al_2O_3 | phase | abbrev. | formula | mole % values | | | | weight % values | | | | |--------------|------------------|--|---------------|--------------------------------|------------------|------------------|-----------------|--------------------------------|------------------|------------------| | | | | CaO | Al ₂ O ₃ | SiO ₂ | H ₂ O | CaO | Al ₂ O ₃ | SiO ₂ | H ₂ O | | quartz | Qz | SiO ₂ | | | | | | | | | | corundum | Со | Al_2O_3 | | | | | | | | | | lime | Li | CaO | | | | | | | | | | water vapor | H ₂ O | H ₂ O | | | | | | | | | | kyanite | Ку | Al ₂ SiO ₅ | | | | | | | | | | sillimanite | Sil | Al ₂ SiO ₅ | | | | | | | | | | andalusite | And | Al ₂ SiO ₅ | | | | | | | | | | diaspore | Dsp | AIO(OH) | | | | | | | | | | wollastonite | Wo | CaSiO ₃ | | | | | | | | | | grossular | Gr | Ca ₃ Al ₂ Si ₃ O ₁₂ | | | | | | | | | | anorthite | An | CaAl ₂ Si ₂ O ₈ | | | | | | | | | | gehlenite | Ge | Ca ₂ Al ₂ SiO ₇ | | | | | | | | | | margarite | Mg | CaAl ₄ Si ₂ O ₁₀ (OH) ₂ | | | | | | | | | | zoisite | Zo | Ca ₂ Al ₃ Si ₃ O ₁₂ (OH) | | | | | | | | | | lawsonite | Lw | CaAl ₂ Si ₂ O ₇ (OH) ₂ ·H ₂ O | | | | | | | | | | prehnite | Pr | Ca ₂ Al(AlSi ₃ O ₁₀)(OH) ₂ | | | | | | | | |