Mole %, Wt. %, Compositions and Projections

C:\Courses\320\fall2007\in class\020-Projections.wpd; August 23, 2007 (3:31pm)

Consider the minerals/fluids listed in Table 1, at the end of this handout.

- 1. Calculate the mole % of each element in each phase and fill in the table.
- 2. Calculate the weight % of each element in each phase and fill in the table.

(If I were doing this, I would use Excel or Quattro or some other spreadsheet. If you set up the spreadsheet it will save you a lot of button pushing on your calculator. And you will not make errors. But, hey, it's a fee country – do it as you wish.)

- 3. Answer question 4 before doing this: For those phases that do not contain water: Plot their compositions on the two triangular diagrams provided later on in this handout, and label the points with the phase abbreviations. One plot uses mole % values, the other uses Wt %.
- 4. BUT WAIT! BEFORE YOU DO THE PLOTTING, ANSWER THIS QUESTION: Make a prediction -- What do you think the differences will be between the two plots. Will they be the same? If so, why? If not, will they be completely different? Or, only a little different? Why? Explain.

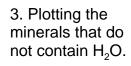
5. For plotting mineral compositions and thinking about how they compare and mineral reactions, etc., which kind of plot do you think would be most valuable: mole% plots or weight% plots? Why?

6. Under what circumstance would the other kind of plot be useful?

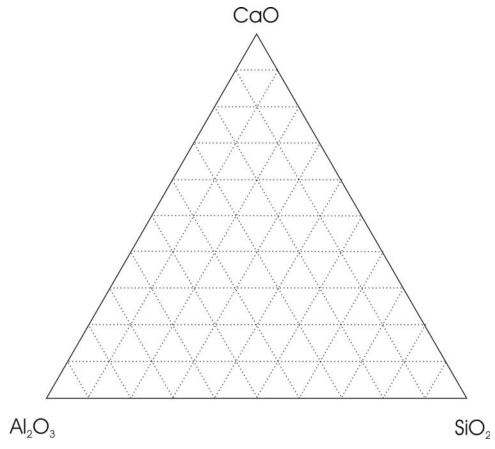
7. Now redo the mole% diagram you just plotted but add the phases that include H_2O as well. The problem is that we now have four components. Must come up with a plan. What to do? Hmmm.

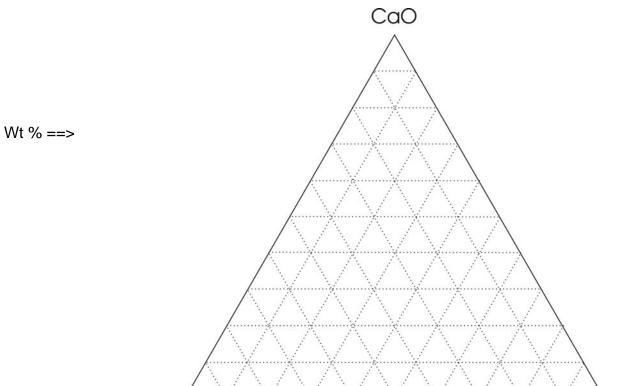
BEFORE YOU START PLOTTING AGAIN, PREDICT WHAT YOU WILL FIND. YOU ARE GOING TO MAKE FOUR PLOTS (READ BELOW): WILL THE FOUR PLOTS COME OUT TO BE SIMILAR, DIFFERENT, OR SOMEWHERE BETWEEN?

Try plotting the compositions (use mole%) ignoring H_2O . Just add up the other three and *normalize* (multiply by a fudge factor) so they total 100%. Then plot. (The ones you plotted before will not move because they already total 100% – they contain no H_2O .) By ignoring a component, you are creating a *projection*. The idea is that if H_2O (or something else) is unimportant, we can just ignore it for plotting purposes.

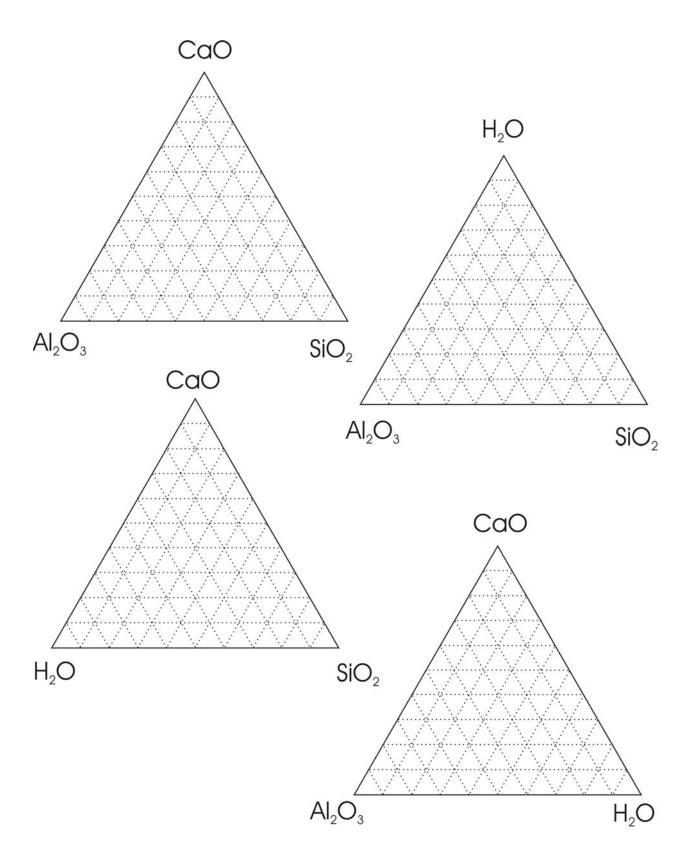

Try plotting the compositions, projecting from (ignoring) CaO.

Try plotting the compositions, projecting from (ignoring) Al₂O₃.


Try plotting the compositions, projecting from (ignoring) SiO₂.


8. How do the four plots you just made compare? Very similar, different, close . . . ? Which do you think would be most valuable when considering mineral compositions, reactions, etc.?

9. What do you think about using projections to plot 3-D compositions on a 2-D piece of paper? Is this useful, misleading, hairy, fun, etc.? Discuss, briefly.


Mole % ==>

 SiO_2

 Al_2O_3

phase	abbrev.	formula	mole % values				weight % values			
			CaO	Al ₂ O ₃	SiO ₂	H ₂ O	CaO	Al ₂ O ₃	SiO ₂	H ₂ O
quartz	Qz	SiO ₂								
corundum	Со	Al_2O_3								
lime	Li	CaO								
water vapor	H ₂ O	H ₂ O								
kyanite	Ку	Al ₂ SiO ₅								
sillimanite	Sil	Al ₂ SiO ₅								
andalusite	And	Al ₂ SiO ₅								
diaspore	Dsp	AIO(OH)								
wollastonite	Wo	CaSiO ₃								
grossular	Gr	Ca ₃ Al ₂ Si ₃ O ₁₂								
anorthite	An	CaAl ₂ Si ₂ O ₈								
gehlenite	Ge	Ca ₂ Al ₂ SiO ₇								
margarite	Mg	CaAl ₄ Si ₂ O ₁₀ (OH) ₂								
zoisite	Zo	Ca ₂ Al ₃ Si ₃ O ₁₂ (OH)								
lawsonite	Lw	CaAl ₂ Si ₂ O ₇ (OH) ₂ ·H ₂ O								
prehnite	Pr	Ca ₂ Al(AlSi ₃ O ₁₀)(OH) ₂								