## Common Depositional Sequences

Sequences that represent geologically instantaneous events, lasting a few hours to a few days


|  | Flow Regime Divisions and Resulting Sedimentary Structures |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOW ENERGY $\longrightarrow$ increasing water velocity |  |  |  |  |  |  |
| LOWER FLOW REGIME |  |  |  |  | UPPER FLOW REGIME | NO DEPOSITION: EROSION (All particles in motion) |
| Lower-Lower |  |  | Upper-Lower |  |  |  |
| Small Ripples <br> Wave length < 30 cm ; usually less |  |  | Large Ripples <br> Wave length > 1 meter; no upper limit |  | Plane Bed (HVL) | Flute Marks Scours Channels |
| $\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 0 \\ & \text { 心 } \end{aligned}$ |  | Linguloid Ripples | Large Straight Crested Ripples | Lunate Ripples | Antidunes <br> Chute and Pool |  |
|  | The sedimentary structures below result from the above bed forms |  |  |  | L) | Sediment Channel Fill <br> (For example, a point bar sequence |
|  | Small Cross Beds $<5 \mathrm{~cm}$ high; usually much less |  | Large Cross Beds <br> $>5 \mathrm{~cm}$ high; no upper limit |  |  |  |
|  |  |  | Large Planar Cross Beds |  | Antidunes <br> Chute and Pool |  |

## Submarine Fan Depositional Models



Fig. 12.45. Carboniferous-Permian Sweetwater Slope Group of the Midland Basin Texas (after Galloway and Brown, 1973).

## History of Dívergent Plate Boundaríes



Foundering of Rift Valley / Marine Invasion
 of maturation (arrow) of graben fill sediments through time.
Early Divergent Margin Sediment Wedge


## Early Divergent Margin



Full Divergent Margin

# Depositional Systems in Two Stages In the Development of a Terrestrial Rift System 


a - Early Fault Stage: Initiation stage: numerous isolated fluvio-lacustrine sub-basins.





## Upper Martinsburg (Cub Sandstone), Catherine Furnace. <br> Measured by Rick Diecchio and Lynn Fichter, August, 2012



Measured by Rick Diecchio and Lynn Fichter, August, 2012


Measured by Rick Diecchio and Lynn Fichter, August, 2012




## State of the Outcrop and Measured Section

The Catherine's Furnace section of the "Cub sandstone" or upper Martinsburg is badly deteriorated by weathering, masking many of the sedimentologic and stratigraphic signatures. Some relatively clean arenite beds do stand out, but wacke beds are more common and often have diffuse boundaries, especially at the top where they may grade or fine upward into flaky weathered units looking superficially like weathered silt or shale but on close examination are sand rich. Many parts of the outcrop that look to be dominated by weathered shale/silt have sand rich zones that may be lenticular, wavy, or flaser-type bedding, but without distinct bed contacts to identify them. Sand rich zones were not mapped as beds unless distinct contacts were visible. We frequently used the cleavage to distinguish shale layers because the shale cleavage differs by a few degrees from the bedding fissility of weathered wacke or silt beds.

Many of the sand beds change thickness laterally, thickening and/or thinning, or pinching to zero, but it is easy to miss these changes. The thickening/thinning may occur on both the top and bottom of the bed; or on one or the other; often it is not possible to tell. Some sandstones shows internal layering (laminations or cross bedding), and were indicated as such, but many do not, or have only a faint hint of internal layering. We assume that all the sandstone beds were deposited by flow regime conditions that would result in laminations, beds, or bedsets (as opposed to mass transport mechanisms), consistent with the beds for which we do have flow regime structures

Many of the thicker sandstone beds are almost certainly amalgamated (composed of more than one deposition event separated by reactivation surfaces, such as scours, clay drapes, or pebble lags). In some cases the reactivation surfaces were visible, but often they were not. Flow regime and environmental interpretations are based on a composite of all the information in the section and extrapolated to parts of the section where evidence was sketchy or missing. Our interpretation is most consistent with storm shelf parasequence models.

It is difficult to be entirely objective when measure a section like this. We strove to be consistent in the accuracy and precision of the data collected, especially across the coarsening/thickening upward changes in the section, but someone else might make different judgements about what is significant or not, and therefore what patterns are present. We welcome discussion and debate on these differences of observation and opinion.


## Composite Sea Level Curves and Sequences



## The QFL Distribution Of Sedimentary Rocks In Various Tectonic Regimes




Hot Spot/Thermal Doming


Early Divergent Margin

Northwest
Transgressing Sea



Cambrian Continental Margin



Interpretive Cross Sections From Eastern West Virginia Across Northern Virginia

Pre－Taconian（Chazyan）
Taconian（Cincinnatian）
Alleghenian（Late Paleozoic）


## LNOצヨ ヨગary ヨntg




SAATS Model for the History of a Foreland Basin
(Subsidence-Accommodation-Accumuation-Time-Series)

Predictive Model for Development of the Chilhowee Group in the

ди!ити dәар






## Braided River Spectrum



## Stratigraphy and Interpretation of the Tumbling Run Section, Strausburg, Virginia Route 601, Fisher's Hill Road, North Side Outcrop Profile














