1. What is the velocity of light in a glass whose index of refraction is 1.50?

 $V = (3 \times 10^8)/1.50$ $V = 2 \times 10^8$ m/s

2. Light travels at a velocity of 2.25×10^8 m/s in water. Calculate the index of refraction of water.

Nw = (3/2.25)Nw = 1.33

3. What is the frequency of light that has a wavelength of 4861Å in a vacuum?

 $v = c/\lambda$ $v = 3 \times 10^{18} (\text{Å/s}) / 4861$ $v = 6.17 \times 10^{14} \text{ hz}$

4. What is the frequency of this light in water?

 $v = 6.17 \times 10^{14} \text{ hz}$ Frequency does not change

5. What is the wavelength of this light in water?

 $\lambda = 4861/1.33$ $\lambda = 3655 \text{ Å}$

6. In going from air to water, is light bent toward the normal (perpendicular), or away from the normal to the surface?

toward

Light

Problem Set 9

7. In going from water to air, what is the critical angle (measured from the perpendicular), above which a ray from the water is totally reflected back into the water?

```
N_i \sin \omega_i = n_r \sin \omega_r
1.33 \sin \omega_c = 1 * 1
\omega_c = \sin^{-1}(1/1.33)
\omega_c = 48.75^{\circ}
```

8. A piece of glass has a Lambert's Law absorption coefficient of 0.5 cm⁻¹ for all wavelengths of light. Calculate the percent of a beam of white light that is absorbed in passing through one centimeter of this glass.

```
I/I_0 = \exp(-kt) = \exp(-0.5)

I/I_0 = 0.6065

60.7% transmitted; 39.3% absorbed
```

9. In general, as the density of a liquid increases, does the index of refraction increase or decrease?

Increases

10. Most liquids expand on heating. As the temperature of a liquid increases, would you expect it index of refraction to increase or decrease?

Decreases