GEOL3010

Light

Problem Set 9

1. What is the velocity of light in a glass whose index of refraction is 1.50 ?
$V=\left(3 \times 10^{8}\right) / 1.50$
$\mathrm{V}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
2. Light travels at a velocity of $2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in water. Calculate the index of refraction of water.

Nw = (3/2.25)
$N w=1.33$
3. What is the frequency of light that has a wavelength of $4861 \AA$ in a vacuum?
$v=c / \lambda$
$v=3 \times 10^{18}(\AA \AA / \mathrm{s}) / 4861$
$v=6.17 \times 10^{14} \mathrm{hz}$
4. What is the frequency of this light in water?
$v=6.17 \times 10^{14} \mathrm{hz}$
Frequency does not change
5. What is the wavelength of this light in water?
$\lambda=4861 / 1.33$
$\lambda=3655 \AA$
6. In going from air to water, is light bent toward the normal (perpendicular), or away from the normal to the surface?
toward
$\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

GEOL3010

7. In going from water to air, what is the critical angle (measured from the perpendicular), above which a ray from the water is totally reflected back into the water?
$\mathrm{N}_{\mathrm{i}} \sin \omega_{\mathrm{i}}=\mathrm{n}_{\mathrm{r}} \sin \omega_{\mathrm{r}}$
$1.33 \sin \omega_{c}=1$ * 1
$\omega_{c}=\sin ^{-1}(1 / 1.33)$
$\omega_{c}=48.75^{\circ}$
8. A piece of glass has a Lambert's Law absorption coefficient of $0.5 \mathrm{~cm}^{-1}$ for all wavelengths of light. Calculate the percent of a beam of white light that is absorbed in passing through one centimeter of this glass.
$1 / I_{0}=\exp (-k t)=\exp (-0.5)$
$\mathrm{I} / \mathrm{I}_{0}=0.6065$
60.7\% transmitted; 39.3\% absorbed
9. In general, as the density of a liquid increases, does the index of refraction increase or decrease?

Increases
10. Most liquids expand on heating. As the temperature of a liquid increases, would you expect it index of refraction to increase or decrease?

Decreases

