GEOL3010

1. Mo k-series radiation has an absorption edge corresponding to a wavelength of $0.61977 \AA$. The $k \alpha_{1}$ line has a wavelength of $0.70926 \AA$ and the $k \beta_{1}$, a wavelength of 0.63225 Å.
A. What is the minimum potential in KV that can be used to produce Mo k-series radiation from a Mo-target X-ray tube?
Convert the energy of the absorption edge to eV.
$E=h c / \lambda$
$E=6.6 * 10^{-34} * 3.0 * 10^{8} / 0.61977 * 10^{-10}$
$E=3.1047 * 10^{-15}$ joules
$E=3.1047 * 10^{-15} / 1.602^{*} 10^{-19}$
$E=19,947 \mathrm{eV}$
Voltage $=19.947 \mathrm{KV}$
B. What is the frequency of Mo $\mathrm{k} \beta$ radiation?
$v=c / \lambda$
$v=3 * 10^{8} / 0.63225^{*} 10^{-10}$
$v=4.745^{*} 10^{18} \mathrm{hz}$
C. Nb has an absorption edge corresponding to a wavelength of $0.65291 \AA \AA$. Can Nb be used as a β-filter for Mo radiation? Why?
$\mathrm{K} \beta(\mathrm{Mo})=0.63225 \AA$ Is this energetic enough to remove inner K-shell electrons from Nb ?
Yes
$K \alpha(M o)=0.70926 \AA$ Is this energetic enough to remove inner K-shell electrons from Nb?
No
Then the $\mathrm{K} \beta$ of Mo will be absorbed strongly but the $\mathrm{K} \alpha$ will not. So it can be used as a β-filter.

Planck's Constant $=6.6 \times 10^{-34}$ joule-sec
$1 \mathrm{ev}=1.6016 \times 10^{-19}$ joule
$\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

GEOL3010

X-Rays

 Problem Set 72. Barite $\left(\mathrm{BaSO}_{4}\right)$ has orthorhombic cell edges $a=7.157 \AA, b=8.884 \AA$, and $c=5.457 \AA$. Calculate 2θ for Cuka radiation $\lambda=1.5405 \AA$) for the following X-ray diffractions:
a. (002)
$d=1 /\left[h^{2} / a^{2}+k^{2} / b^{2}+I^{2} / c^{2}\right]^{1 / 2}$

$$
d=c / 2
$$

$$
d=2.728 \AA
$$

$$
\begin{aligned}
& \lambda=2 d{ }^{*} \sin \theta \\
& 2 \theta=2^{*} \sin ^{-1}(\lambda / 2 d) \\
& 2 \theta=2^{*} \sin ^{-1}(1.5405 / 5.457) \\
& 2 \theta=32.79^{\circ}
\end{aligned}
$$

b. (110)

$$
\begin{aligned}
& d=1 /\left[\mathrm{h}^{2} / \mathrm{a}^{2}+\mathrm{k}^{2} / \mathrm{b}^{2}+\mathrm{I}^{2} / \mathrm{c}^{2}\right]^{1 / 2} \\
& \mathrm{~d}=1 /\left[(1 / 7.157)^{2}+(1 / 8.884)^{2}\right]^{1 / 2} \\
& \mathrm{~d}=5.574 \AA
\end{aligned}
$$

```
\(\lambda=2 d * \sin \theta\)
\(2 \theta=2^{*} \sin ^{-1}(\lambda / 2 d)\)
\(2 \theta=2^{*} \sin ^{-1}\left(1.5405 / 2^{*} 5.574\right)\)
\(2 \theta=15.88^{\circ}\)
```

c. (021)
$d=1 /\left[h^{2} / a^{2}+k^{2} / b^{2}+I^{2} / c^{2}\right]^{1 / 2}$
$d=1 /\left[(2 / 8.884)^{2}+(1 / 5.457)^{2}\right]^{1 / 2}$
$\mathrm{d}=3.445 \AA$

```
\(\lambda=2 d * \sin \theta\)
\(2 \theta=2^{*} \sin ^{-1}(\lambda / 2 d)\)
\(2 \theta=2^{*} \sin ^{-1}\left(1.5405 / 2^{*} 3.445\right)\)
\(2 \theta=25.84^{\circ}\)
```

d. (111)
$d=1 /\left[h^{2} / a^{2}+k^{2} / b^{2}+I^{2} / c^{2}\right]^{1 / 2}$
$d=1 /\left[(1 / 7.157)^{2}+(1 / 8.884)^{2}+(1 / 5.457)^{2}\right]^{1 / 2}$
$\mathrm{d}=3.899 \AA$

```
\(\lambda=2 d * \sin \theta\)
\(2 \theta=2^{*} \sin ^{-1}(\lambda / 2 d)\)
\(2 \theta=2^{*} \sin ^{-1}(1.5405 / 2 * 3.899)\)
\(2 \theta=22.79^{\circ}\)
```

e. (301)
$d=1 /\left[h^{2} / a^{2}+k^{2} / b^{2}+I^{2} / c^{2}\right]^{1 / 2}$
$\lambda=2 \mathrm{~d} * \sin \theta$
$2 \theta=2^{*} \sin ^{-1}(\lambda / 2 \mathrm{~d})$
$2 \theta=2^{*} \sin ^{-1}\left(1.5405 / 2^{*} 2.262\right)$
$2 \theta=39.82^{\circ}$
$d=1 /\left[(3 / 7.157)^{2}+(1 / 5.457)^{2}\right]^{1 / 2}$
$\mathrm{d}=2.262 \AA$

