Comparison of Lengths Relevant to Our Universe

Where Do These Belong On The Scale?		
A. distance to Andromeda Galaxy	~ 2.5 million light years	$10 \underline{24} \mathrm{~cm}$
B. diameter of Milky Way Galaxy	$\sim 100,000$ light years	$10 \underline{22} \mathrm{~cm}$
C. distance from Sun to nearest other star	4.22 light years	$10 \underline{18} \mathrm{~cm}$
D. distance from Earth to Sun	$\sim 1.5 \times 10^{8} \mathrm{~km}$	$10-\frac{13}{-} \mathrm{cm}$
E. mean diameter of Earth	$12,742 \mathrm{~km}$	$10-98 \mathrm{~cm}$
F. distance from New York to Seattle	3,875 km	$10-8 . \mathrm{cm}$
G. peak elevation of Mt. Everest	8,848 meters	$10-5$
H. length of a blue whale (largest animal)	33 meters	$10-3 \mathrm{~cm}$
I. typical human height	1.7 meters	$10-2 \mathrm{~cm}$

If the universe expanded uniformly at the speed of light in a vacuum since the Big Bang 13.7 billion years ago, the diameter of the universe would be the maximum distance to the cosmic horizon.
cosmic horizon $-10^{28} \mathrm{~cm}$
(light travels 299,792,458 meters per second in a vacuum)

after Joel R. Primack and Nancy Ellen Abrams, 2006, The View from the Center of the Universe: New York, Riverhead Books, 386 p., ISBN 1-59448-914-9

The Planck length is defined by three physical constants that are fundamental to the classical and quantum models of gravity and that combine in a dimensional analysis to yield a distance. The three constants are the Planck constant, the speed of light in a vacuum, and the gravitational constant. The Planck length is thought to be the smallest meaningful length in Nature, corresponding to the smallest distance over which quantum gravity operates.

