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Introduction

1.0 CHAPTER OVERVIEW

The purpose of this book is to quantify, in the simplest linear approximation,
how fluid extraction or injection produces stress changes in isotropic, fluid-
saturated rock formations; and conversely, how loads applied to an aquifer by
engineered structures, atmospheric pressure, earth and ocean tides, tectonic
activity, or reservoir lake level changes produce water-level changes in wells.
This coupling between changes in stress and changes in fluid pressure forms
the subject of poroelasticity. Literal clues to poroelastic phenomena appear
in metaphors such as “stressing an aquifer” in reference to pumping a well
or “strain meter” in reference to a water well on a fault.
The term poroelasticity was first coined by J. Geertsma as a footnote in

his 1966 paper entitled “Problems of rock mechanics in petroleum produc-
tion engineering.” Geertsma’s footnote refers specifically to “Biot’s work
on the theory of the elasticity and viscoelasticity of fluid-saturated porous
solids” as “typical of the macroscopic stress-strain relations to be encoun-
tered.” Geertsma explicitly pointed out that “the mathematical description of
the macroscopic theory of poroelasticity is similar to that used in the theory
of thermoelasticity.” This chapter provides a historical perspective on how
the disciplines of geomechanics, hydrogeology, and petroleum engineering
contributed to our present understanding of coupled fluid and mechanical
behavior.
This chapter previews the constitutive equations of poroelasticity for the

case of an isotropic applied stress field. It examines the physical significance
of material coefficients such as drained compressibility, poroelastic expan-
sion coefficient, specific storage coefficient, and Skempton’s coefficient. The
chapter concludes with a description of the analogy between poroelasticity
and thermoelasticity.

1.1 HISTORICAL EXAMPLES

Poroelastic behavior can explain an initially unexpected connection between
a causal event and its subsequent effect. What follows is a variety of historical
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examples of poroelastic phenomena:

• Water Levels in Wells Correlate with Ocean Tides. Pliny the Elder stated
in a.d. 77 that near the temple of Hercules in Cadiz “there is a closed
source similar to a well which occasionally rises and falls with the
ocean, but at other times does the opposite” (Melchior, 1983, p. 2).

• Water Levels Change in Well as Trains Pass. F. H. King (1892) of the
University of Wisconsin reported that water levels in a well near the
train station at Whitewater, Wisconsin, went up as a train approached
and went down as a train left the station. The water level fluctuation was
greater for a heavy freight train than for a lighter and faster passenger
train.

• Water Levels in Boardwalk Wells Fluctuate with Ocean Tides. In 1902
the United States Geological Survey (USGS) reported that water-level
oscillations in wells in Atlantic City, New Jersey, were synchronous
with ocean depths, because the weight of sea water at high tide com-
pressed the underlying rock, thereby forcing pore water up the wells
(Meinzer, 1928).

• Texas Claims Oil Fields That Sink into the Sea. The state of Texas
claimed title to the part of the Goose Creek oil field near Galveston,
Texas, that had become covered with water from Galveston Bay follow-
ing oil production. The state used the argument that the submerged land
belonged to the state. The counterclaim by landowners was based on
a geologic study by Pratt and Johnson (1926, p. 582) showing that the
subsidence could be attributed to the extraction of 100 million barrels
of water, oil, and sand from the reservoir. The courts ruled against the
state claim because the submergence was due to human action and not
natural causes.

• Water Levels Rise in Wells Near a Pumping Well. Observers in the small
fishing village of Noordbergum in northern Friesland (Netherlands) wit-
nessed a curious rise in water levels when large pumps were turned on
in nearby wells. The behavior lasted a few hours before the water lev-
els dropped. When the large pumps were shut off, the reverse situation
occurred—namely, water levels dropped farther before they recovered.
Verruijt (1969) concluded that the reverse well fluctuations occurred
because pumping instantly compressed the aquifer to force water up
the well.

• Lake Mead Triggers Earthquakes. The completion in 1935 of Hoover
Dam along the Colorado River created 100-meter-deep Lake Mead
behind it. Shortly after completion, small earthquakes beneath the lake
occurred as a result of a combination of factors (Roeloffs, 1988).
One factor was that the additional weight of the dam and water
was stressing faults to the failure point; another was that water from
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the lake seeped into the fault, thereby reducing their resistance to
slipping.

1.2 BASIC CONCEPTS

Two basic phenomena underlie poroelastic behavior:

• Solid-to-fluid coupling occurs when a change in applied stress produces
a change in fluid pressure or fluid mass.

• Fluid-to-solid coupling occurs when a change in fluid pressure or fluid
mass produces a change in the volume of the porous material.

As used here, the word solid refers to the skeletal framework of bulk, porous
material. The terms fluid pressure and pore pressure are also used inter-
changeably. The solid-to-fluid and fluid-to-solid couplings are assumed to
occur instantaneously in the quasistatic approximation in which elastic wave
propagation is ignored. The simplest mathematical description of the two
basic forms of coupling between solid and fluid is a set of linear constitutive
equations. The equations relate strain and fluid-mass changes to stress and
fluid-pressure changes. The poroelastic constitutive equations are generaliza-
tions of linear elasticity whereby the fluid pressure field is incorporated in
a fashion entirely analogous to the manner in which the temperature field is
incorporated in thermoelasticity (cf. Section 1.9). An increase of fluid pres-
sure causes the medium to expand just as an increase of temperature causes
it to expand.
The magnitude of the solid-to-fluid coupling depends on the compress-

ibility of the framework of the porous material, the compressibility of the
pores, the compressibility of the solid grains, the compressibility of the
pore fluid, and the porosity. Negligible solid-to-fluid coupling occurs for a
highly compressible fluid such as air. An example of solid-to-fluid coupling
is the response of water levels in a well to the passage of nearby trains
(Fig. 1.1).
Changes of fluid mass or fluid pressure in a porous material produce strains

in the bulk, porous solid. A uniform change in fluid pressure throughout a
porous body subjected to no external stresses or constraints (free strain case)
produces a uniform strain and no poroelastic stresses. In general, considera-
tion of boundary constraints means that the strain field is different from the
free strain case, and poroelastic stresses exist within the body. An example of
fluid-to-solid coupling is subsidence due to large amounts of fluid extraction
from an aquifer or hydrocarbon reservoir (Fig. 1.2).
A nonuniform pore pressure distribution leads to time-dependent fluid flow

according to Darcy’s (1856) law. The time dependence of pore pressure pro-
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Figure 1.1: Water-level fluctuations due to a passing train. An approaching train
compresses the aquifer, which quickly raises the pore pressure in the affected
region. Fluid then flows away from the high-pressure region. As the train departs,
the aquifer expands, thereby quickly reducing the pore pressure in the affected
region. Fluid again flows in response to the pressure differences, but this time
it builds up the pore pressure. The approximately equal and opposite behaviors
demonstrate that the aquifer is elastic (Domenico and Schwartz, 1998, p. 65; Jacob,
1940).

duces time dependence of poroelastic stresses and strains, which in turn
couple back to the pore pressure field. Quantifying these basic poroelastic
concepts for application to time-dependent, coupled deformation and fluid-
flow problems in hydrogeology, geomechanics, and petroleum engineering is
the subject of this book. If only fluid-to-solid coupling were important, the
problem would be mathematically simpler because the fluid-flow problem
can be solved independently of the stress field. The stress field (and hence
strain and displacement fields) could then be calculated as functions of posi-
tion and time once the pore pressure field has been determined as a function
of position and time. This one-way coupling is called the uncoupled problem.
However, when the time-dependent changes in stress feed back significantly
to the pore pressure, the two-way coupling is important, and the problem is
called coupled. In the mathematically analogous subject of thermoelasticity,
significant heating of material from stress changes does not occur for most
materials, and hence most thermoelastic analyses ignore this direction of cou-
pling, and are uncoupled. However, applied stress changes in fluid-saturated
porous materials typically produce significant changes in pore pressure, and
this direction of coupling is significant.
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Figure 1.2: Vertical subsidence due to 100 million barrels of fluid (and sand)
extracted from the Goose Creek oil field near Galveston, Texas (Pratt and Johnson,
1926, p. 582). Water-covered areas are shown in black. Subsidence is not purely elas-
tic, as a significant amount is not recovered if fluids are reinjected.
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1.3 BRIEF HISTORY

Important concepts of poroelasticity developed somewhat independently in
geomechanics, petroleum engineering, and hydrogeology. One theme of this
book is to highlight the unified description that poroelastic theory provides
all three disciplines.
The scientific history of poroelastic concepts spans approximately one hun-

dred fifty years. The early period, from the publication of Darcy’s law1 in
1856 to 1900, included observations of well behavior in response to various
loading phenomena such as trains and tides. Increased exploitation of ground-
water and hydrocarbon resources in the 1900–1930 period was the impetus
for improved scientific and engineering understanding of the principles gov-
erning their occurrence and flow. Also, increased civil construction during
this period became the impetus for improved understanding of the behavior of
soil as a foundation material. The canonical geomechanics problem was soil
consolidation, and the canonical hydrogeology problem was elastic storage
in a confined aquifer. From 1930 to 1960, significant progress was made in
each of the three disciplines in developing fundamental concepts, formulating
or extending constitutive laws and governing equations, and obtaining analyt-
ical solutions. After 1960, more complex analytical solutions were obtained
for problems in land subsidence and earthquake mechanics. Numerical solu-
tions increased in importance as the digital computer enabled more realis-
tic simulations of geological situations and of nonlinear and time-dependent
constitutive properties.

1.4 GEOMECHANICS

Karl Terzaghi (1883–1963) sought to understand the behavior of soil as a
foundation material by performing controlled laboratory experiments. The
work, which led to his consolidation theory,2 was conducted between 1916
and 1925, when he was assigned by the Austrian Department of Foreign
Affairs in Vienna to lecture at Robert University in Istanbul. He published two
influential textbooks, Erdbaumechanik auf bodenphysikalischer Grundlage
in 1925 and Theoretical Soil Mechanics in 1943. The key experiment from
which he developed the governing Eqn. 1.1 is shown schematically in
Figure 1.3. A fully saturated soil sample is confined laterally in a cylinder of

1 An entertaining and illuminating biographical sketch of Darcy is given by Freeze (1994).
2 A bitter scientific dispute developed between Terzaghi and Fillunger initially over the theory

of uplift in dams and subsequently over the theory of consolidation. Fillunger committed suicide
in 1937 after learning that a committee of experts would support Terzaghi’s theory (Skempton,
1960; de Boer and Ehlers, 1990; de Boer, 1996; de Boer et al., 1996).
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Figure 1.3: Schematic of uniaxially constrained soil consolidation (after Craig, 1997,
p. 86). A compressive load −W is applied suddenly at time t = 0 to a uniaxially
confined sample of cross-sectional area A. The excess fluid pressure jumps to its
undrained value W/A to support the load. Stress is transferred partially to the solid
skeleton of the porous material (represented by the spring) until excess fluid pressure
is again zero for long times and the load is carried entirely by the solid framework.

cross-sectional area A. An axial load −W is applied suddenly at t = 0 and
then held constant. (Tensile stresses are taken to be positive.) The water pres-
sure throughout the sample jumps up by the amount p = W/A at t = 0+.
A profile of excess pressure develops within the sample as water flows out
the top drain, which is maintained at atmospheric pressure. Terzaghi derived
the consolidation equation for this experiment to be the diffusion equation
for excess (greater than hydrostatic) water pressure p,

∂p

∂t
= c ∂

2p

∂z2
(1.1)

where c is a diffusivity that is known as the consolidation coefficient, t is
time, and z is distance along the soil column.
As will be demonstrated in Section 6.3, Eqn. 1.1 is independent of stress,

because the theory of poroelasticity leads to the special result that the pore
pressure field and applied stress field are uncoupled for the boundary con-
ditions in Terzaghi’s experiment. The time evolution of the pressure profile
is exactly the same as the analogous thermal conduction problem of a sud-
den step change (Carslaw and Jaeger, 1959, pp. 96–97), which was noted by
Terzaghi.
Terzaghi is generally recognized for elucidating the important concept of

effective stress, which for soils is well approximated to be the difference
between the applied stress and pore pressure, because the grains are incom-
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pressible relative to the bulk soil. Initially, the axial load is borne entirely
by the fluid, but it is shifted to the skeletal frame as the excess pore pres-
sure dissipates. A discussion of the effective stress concept is presented in
Section 2.8.

1.5 HYDROGEOLOGY

Whereas Terzaghi sought general principles in the laboratory, developments
regarding the poroelastic behavior of aquifers were based primarily on field
observations. The first published record of water wells responding to passing
trains was made by F. H. King (1892) in Wisconsin. He noted that a heavy
freight train produced a greater rise in water level than did a lighter and
faster passenger train, and that a locomotive alone did not produce a notice-
able effect. O. E. Meinzer, in his 1928 paper “Compressibility and elasticity
of artesian aquifers,” sought to resolve the puzzle of the source of the large
amounts of irrigation water pumped from the Dakota sandstone. He reasoned
that recharge was insufficient to produce 3000 gallons per minute for 38
years within three townships, and that the compressibility of water alone was
likewise insufficient. He concluded that elastic aquifer compression occurred
as a result of the decline in fluid pressure, and that the reduction in pore
volume was the principal source of water released from storage. He also rec-
ognized that aquifers were elastic because well levels recovered after they
were shut down. In support of his hypothesis, Meinzer cited King’s work
on train-induced fluctuations in water levels, the in-phase response of water
well levels to ocean tides in Atlantic City, New Jersey (Fig. 1.4), and the
subsidence of the Goose Creek oil field. Meinzer also explicitly referenced
Terzaghi’s effective stress principle to equate pressure decline to an effec-
tive stress increase. Meinzer’s insight was that he recognized that aquifers
were compressible and that the laboratory-derived principle of effective stress
could be applied to aquifers. No equations were presented in Meinzer’s 1928
paper, although he incorporated calculations for the relative amounts of water
released from aquifer compression versus water expansion.
The next development in hydrogeology was Theis’s nonequilibrium or

transient flow solution for drawdown of a well pumped at a constant rate.
Theis first conceptualized the problem in terms of heat conduction and then
sought advice from a former college classmate, Clarence Lubin, a mathemat-
ics professor at the University of Cincinnati:3

The flow of ground water has many analogies to the flow of heat by
conduction. We have exact analogies in ground water theory for thermal

3 This passage is in a letter from Theis to Clarence Lubin dated December 19, 1934 (White
and Clebsch, 1994, p. 51).
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Figure 1.4: Ocean tides at Atlantic City. The in-phase response of well levels to
ocean tides on January 22, 1926, in an 800-foot well near Longport, New Jersey, is
evidence of solid-to-fluid coupling. A lag time would be evident if the well levels
were responding to fluid flow (Meinzer, 1928, p. 274).

gradient, thermal conductivity, and specific heat. I think a close approach
to the solution of some of our problems is probably already worked
out in the theory of heat conduction. Is this problem in radial flow
worked out? Given a plate of given constant thickness and with constant
thermal characteristics at a uniform initial temperature to compute the
temperatures throughout the plate at any time after the introduction of
a sink kept at 0 temperature? And a more valuable one from our stand-
point: Given the same plate under the same conditions to compute the
temperatures after the introduction of a sink into which heat flows at a
uniform rate? I forgot to say that the plate may be considered to have
infinite areal extent.

Lubin provided Theis the solution from the 1921 edition of Carslaw’s treatise
on heat conduction. He declined Theis’s offer to be a coauthor with the
words “from the standpoint of mathematics the work is not of fundamental
importance” (Freeze, 1985, p. 442). In the resulting paper, Theis (1935) stated
the analogy between groundwater storage and specific heat:

In heat-conduction a specific amount of heat is lost concomitantly
and instantaneously with fall in temperature. It appears probable,



12 CHAPTER 1. INTRODUCTION

analogously, that in elastic artesian4 aquifers a specific amount of water
is discharged instantaneously from storage as the pressure falls.

Thus, Theis recognized that confined aquifers possess a property analogous
to heat capacity, which he called the coefficient of storage in a subsequent
paper (Theis, 1938). Jacob (1940) derived the transient flow equation for
a horizontal aquifer “from scratch,” as he put it, rather than appeal to the
heat flow analogy. Jacob translated Theis’s verbal definition of coefficient of
storage S into a mathematical definition:

S = 1

ρfA

δMf

δh
(1.2)

where ρf is the density of water, A is the horizontal cross-sectional area of
a vertical column of aquifer, δMf is the change in the mass of water in a
column of area A, and δh is the change in head. Eqn. 1.2 is a macroscopic
definition, which gives no insight into the physical mechanisms behind stor-
age capacity. Jacob, therefore, considered the micromechanics5 of the release
of water from aquifer compression and fluid expansion. With the assump-
tion that the individual mineral grains are incompressible, Jacob derived the
expression

S = ρf gb
(
φ

Kf
+ 1

Kv

)
(1.3)

where g is the acceleration of gravity, φ is the porosity, b is the aquifer thick-
ness, Kf is the bulk modulus of water, and Kv is a modulus of compression
of the aquifer. Jacob made no explicit specification of the particular modu-
lus of compression represented by Kv; he did not restrict it to be a vertical
modulus.
Jacob (1950) later arrived at the three-dimensional governing equation,

which is the usual starting point for transient fluid-flow analyses for confined
aquifers,

∂h

∂t
= ρf gk

µSs
∇2h (1.4)

where k is the permeability, µ is the fluid viscosity, and Ss is the standard
hydrogeological specific storage (Hantush, 1960). The fluid-flow equation
obtained from poroelastic theory contains an additional term associated with
the time dependence of strain of the elementary volume under consideration.

4 The word confined is today generally used in place of artesian.
5 Micromechanics is the science of mechanics applied to granular materials at the grain and

pore scale.
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This additional term was a decade-long issue in hydrogeology in the 1960s
until 1969, when Verruijt showed that the most general (linear) description
of aquifer behavior is obtained from Biot’s theory.

1.6 PETROLEUM ENGINEERING

Muskat wrote Flow of Homogeneous Fluids through Porous Media over
a period of about 5 years in the 1930s with the encouragement of his
employer, Gulf Oil in Pittsburgh. His book can be viewed as a treatise
on applied potential theory. Muskat systematically developed solutions to
Laplace’s and Poisson’s equations and the diffusion equation for boundary
and initial conditions relevant to problems of groundwater flow in aquifers
and fluid movement in hydrocarbon reservoirs. Although he was affiliated
with an oil company, his book provides a balanced coverage of literature in
both hydrogeology and petroleum engineering. He included many problems
he had solved personally. Muskat considered storage effects to result primar-
ily from fluid expansion, since rocks were thought to be incompressible at
reservoir depths. Fluid expansion, however, was inadequate to account for the
500 million barrels of oil extracted with a pressure decline of 375 pounds per
square inch from the East Texas Oil Field in the late 1920s and early 1930s.
Muskat attributed the high production to be due to drive from small pockets
of highly compressible gas or to “water drive” from the peripheries of the
reservoir. Jacob (1940) suggested alternatively that the high production was
due to the compressibility of the Woodbine sand and clays.
Poroelastic theory was used in petroleum engineering primarily to under-

stand subsidence, estimate hydrocarbon volumes, and predict stresses around
boreholes. The subsidence of the Goose Creek oil field described by Pratt and
Johnson (1926) was the first conceptual realization of the coupling between
large volumes of fluid extraction and large-scale mechanical deformation.
Because the problem of large groundwater withdrawals from aquifers is iden-
tical, Geertsma, who was affiliated with Shell in the Netherlands, referred
in his 1966 paper to subsidence in Mexico City and the Houston-Galveston
region in Texas. The groundwater subsidence literature in the 1970s (e.g.,
Gambolati and Freeze, 1973; Gambolati et al., 1974) used numerical tech-
niques more heavily than the analytical techniques introduced by Geertsma
and used most recently by Segall (Segall, 1992; Segall et al., 1994). Segall’s
work connects hydrocarbon extraction with induced seismicity.
Poroelasticity research in the 1940s and 1950s was oriented primarily

toward rock mechanics. Hughes and Cooke (1953) made laboratory measure-
ments of pore compressibilities to correct for available pore space at reservoir
depths. Laboratory measurements of poroelastic parameters continue (e.g.,
Laurent et al., 1993; Hart and Wang, 1995). Of particular importance in
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petroleum engineering and geophysics is the use of hydraulic fracturing as a
technique for measuring earth stresses (Hubbert and Willis, 1957; Haimson
and Fairhurst, 1969; Detournay and Cheng, 1993).

1.7 BIOT’S THEORY

Terzaghi’s mathematical treatment was based on his one-dimensional labo-
ratory experiments. The general three-dimensional theory of poroelasticity6

was formulated by Biot in 1941 when he was a professor of mechanics at
Columbia University. It appeared in the Journal of Applied Physics with the
title “General theory of three-dimensional consolidation” (Biot, 1941a). It
contained the constitutive equations that are the central subject of this book.
Biot subsequently extended the theory to describe wave propagation in fluid-
filled porous media (Biot, 1956a, 1956b).
In his 1941 paper Biot introduced a quantity he called the variation in

water content, which he defined as “the increment of water volume per unit
volume of soil” (Biot, 1941a). The increment of water content is the volume
of the water exchanged by flow into or out of the control volume. In other
words, Biot’s increment of water content is the volume of water added to
storage as used in the earlier hydrogeologic work of Theis or Jacob, although
Biot’s work appears to be independent of theirs. Biot’s variable for a generic
fluid is called the increment of fluid content ζ . No symbol has been used gen-
erally in the hydrogeologic literature for this quantity. Biot’s (1941a) descrip-
tion of a hypothetical experiment in which a thin tube is used to extract water
from a soil sample evokes the image of withdrawing water from a well:

. . . consider a sample of soil enclosed in a thin rubber bag so that the
stress applied to the soil be zero. Let us drain the water from this soil
through a thin tube passing through the walls of the bag. If a negative
pressure −po is applied to the tube a certain amount of water will be
sucked out. This amount is given by ζ = −po/R.

A negative value of ζ indicates the removal of water. The proportionality con-
stant 1/R is called the specific storage coefficient at constant stress, because
it is the ratio of the change in increment of fluid content ζ to the change in
pore pressure p for a stress-free sample. The specific storage coefficient at
constant stress is also called the unconstrained specific storage coefficient, or
the three-dimensional specific storage coefficient.
Four poroelastic moduli, rather than the usual two moduli in standard elas-

ticity, are necessary to relate the strains and increment of fluid content to

6 Rendulic (1936) formulated a three-dimensional theory by substituting the Laplacian for the
second spatial derivative in Eqn. 1.1. In three dimensions, this ad hoc generalization ignores an
additional stress-coupling term.
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Maurice Anthony Biot (1905–1985). Biot graduated with a bachelor’s
degree in philosophy (1927); degrees in mining engineering (1929) and
electrical engineering (1930), and a D.Sc. (1931), all from Louvain
University in Belgium, followed by a Ph.D. in aeronautical science
(1932) from the California Institute of Technology under the supervi-
sion of Theodore von Kármán (Williams, 1983; Tolstoy, 1986; Cheng
et al., 1998). Biot held academic positions at Harvard (1934–1935),
Louvain (1935–1937), Columbia (1937–1946), and Brown (1946–
1952), after which he became an independent researcher and consul-
tant. Shell Development and Cornell Aeronautical Laboratory are two
affiliations Biot used in his publications.
Biot worked on both sides of the poroelasticity-thermoelasticity coin,

often citing the isomorphism between the two theories. Twenty-one of
his papers were collected in a volume edited by Ivan Tolstoy and pub-
lished by the Acoustical Society of America (Tolstoy, 1992). All but 2
of Biot’s 175 papers have been collected into a CD-ROM by Thimus
et al. (1998). Biot’s work was in the nineteenth-century tradition of
natural philosophy and mathematical physics. These roots are acknowl-
edged in the preface of von Kármán and Biot’s (1940) textbook Math-
ematical Methods in Engineering in their quote from Lord Kelvin and
Peter Guthrie Tait’s Treatise on Natural Philosophy, Part II: “Neither
seeking nor avoiding mathematical exercitations we enter into prob-
lems solely with a view to possible usefulness for physical science.”
Equally apt historical quotations open each chapter of the text.

stresses and pore pressure. The constant 1/R is one of the two new con-
stants. The other new constant 1/H is a poroelastic expansion coefficient,
which relates the volumetric strain to pore pressure changes for conditions
of constant stress. To the author’s knowledge, the terminology poroelastic
expansion coefficient appears to be new here, as this coefficient is often called
compressibility (cf. Section 3.1).
Biot showed that Terzaghi’s one-dimensional consolidation problem is a

special case of his theory. McNamee and Gibson (1960a, 1960b) used Biot’s
theory to obtain analytical solutions for consolidation of a half space due
to a strip or circular load. Other important applications of Biot’s theory
were to subsidence (Geertsma, 1966) and hydraulic fracturing (Haimson and
Fairhurst, 1969). In 1969 in a paper entitled “Elastic storage of aquifers,”
Verruijt recognized the general applicability of Biot’s theory to aquifer behav-
ior. Verruijt opened his paper with the statement that parallel developments
occurred in soil mechanics and groundwater hydrology.
Rice and Cleary’s 1976 reformulation of Biot’s linear poroelastic consti-

tutive equations has been adopted widely for geophysical problems (Wang,
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Specific Storage Coefficient of a Balloon. This simple experiment to
measure the specific storage coefficient 1/R of a water-filled balloon
(Fig. 1.7) provides observational meaning to the variables increment
of fluid content and storage. A balloon is stretched over the end of a
burette clamped to a meter stick and attached to a tall ring stand. The
balloon and burette are filled with a volume Vf of water to an arbitrary
height h1 on the meter stick and volume V1 on the burette. The volume
of water in the balloon is Vb = Vf −V1. Adding a measured volume of
water �Vf from a beaker raises the water height to h2 and increases
the volume to V2 in the burette. If the compressibility of water and the
burette are assumed to be small, the volume of water �Vf is divided
between the balloon and the burette: �Vf = �Vb + (V2 − V1), where
�Vb is the additional volume of water in the balloon. Because the
increment of fluid content is the ratio �Vb/Vb, ζ = [�Vf − (V2 −
V1)]/Vb. The increase in pressure is p = ρf g(h2 − h1). The specific
storage coefficient 1/R is the ratio of ζ to p.

Figure 1.5: Apparatus to measure the specific storage coefficient of a water-
filled balloon.

1993). Rice and Cleary chose constitutive parameters that emphasized the
drained (constant pore pressure) and undrained (no flow) limits of long- and
short-time behavior, respectively. Their perspective was from the field of
applied mechanics, similar to that of Biot’s, but they apparently were unaware
of his much earlier contributions when they initially approached the prob-
lem. Rice and Cleary defined fluid mass content mf to be the fluid mass per
unit reference volume (see also Biot, 1973, p. 4930). The change in fluid
mass content δmf = mf − mfo , where mfo is the fluid mass content in the
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reference state, is related to increment of fluid content ζ by

ζ = δmf

ρfo
(1.5)

where ρfo is the fluid density in the reference state. Fluid mass content is
a state property, whereas the increment of fluid content must be viewed
in the hydrogeologic sense of volume of fluid transported into or out of
storage. Jacob (1940) defined storage in terms of fluid mass (Eqn. 1.2), but
an advantage to using ζ as a primary variable is that it is dimensionless,
like strain, and the constitutive equations do not have to include a density
factor.

1.8 PREVIEW OF CONSTITUTIVE RELATIONS

The key concepts of Biot’s 1941 poroelastic theory for an isotropic fluid-filled
porous medium are contained in just two linear constitutive equations for the
case of an isotropic applied stress field σ . In addition to σ , the other field
quantities are the volumetric strain ε ≡ δV/V , where V is the bulk volume,
the increment of fluid content ζ , and the fluid pressure p. The volumetric
strain δV/V is taken to be positive in expansion and negative in contraction.
Stress σ is positive if tensile and negative if compressive. Increment of fluid
content ζ is positive for fluid added to the control volume and negative for
fluid withdrawn from the control volume. Fluid pressure (pore pressure) p
greater than atmospheric is positive. The constitutive equations express ε and
ζ as a linear combination of σ and p:

ε = a11σ + a12p (1.6)

ζ = a21σ + a22p (1.7)

Generic coefficients aij are used in Eqns. 1.6 and 1.7 to emphasize the sim-
ple form of the constitutive equations. The first constitutive equation is a
statement of the observation that changes in applied stress and pore pressure
produce a fractional volume change. The second constitutive equation is a
statement of the observation that changes in applied stress and pore pressure
require fluid be added to or removed from storage.
Poroelastic constants are defined as ratios of field variables while main-

taining various constraints on the elementary control volume. The physical
meaning of each coefficient in Eqns. 1.6 and 1.7 is found by taking the ratio
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of the change in a dependent variable relative to the change in an independent
variable, while holding the remaining independent variable constant:

a11 =
δε

δσ

∣∣∣∣
p=0

≡ 1

K

a12 =
δε

δp

∣∣∣∣
σ=0

≡ 1

H

a21 =
δζ

δσ

∣∣∣∣
p=0

≡ 1

H1

a22 =
δζ

δp

∣∣∣∣
σ=0

≡ 1

R
(1.8)

The coefficient 1/K is obtained by measuring the volumetric strain due to
changes in applied stress while holding pore pressure constant.7 The state of
constant pore pressure can be imagined to be enforced by inserting a tube
into the rock and connecting it to a fluid reservoir at the same pressure.
This state is called a drained condition, which is more general than the tube
being vented to atmospheric pressure. Therefore, 1/K is the compressibility
of the material measured under drained conditions, and K is the drained bulk
modulus.
The coefficient 1/H is a property not encountered in ordinary elasticity. It

describes how much the bulk volume changes due to a pore pressure change
while holding the applied stress constant. By analogy with thermal expan-
sion, it is called the poroelastic expansion coefficient. Energy considerations
lead to the result that the coefficient 1/H is the same as 1/H1, that is, the
linear transformation matrix is symmetric (see box).
The coefficient 1/R is a specific storage coefficient measured under condi-

tions of constant applied stress; it is the ratio of the change in the volume of
water added to storage per unit aquifer volume divided by the change in pore
pressure. In this book the specific storage coefficient at constant stress is also
called the unconstrained specific storage coefficient and is designated Sσ :

Sσ ≡ 1

R
(1.9)

7 Constitutive equations are generally written in terms of absolute quantities rather than their
differentials. Each quantity is considered to be relative to a reference state. Also, the expressions
p = 0 and δp = 0 are considered equivalent, so that the words constant pore pressure or drained
conditions are associated with both equations.
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Potential Energy and Reciprocity. Biot (1941a) assumed the existence
of a potential energy density:

U = 1

2
(σε + pζ) (1.13)

The potential energy density is required to satisfy the conditions

∂U

∂ε
= σ and

∂U

∂ζ
= p (1.14)

The mixed partial derivatives ∂2U/∂ζ∂ε and ∂2U/∂ε∂ζ must be equal;
hence,

∂σ

∂ζ
= ∂p

∂ε
(1.15)

Solving Eqns. 1.6 and 1.7 for σ and p gives

σ = a22

�
ε − a12

�
ζ (1.16)

p = −a21
�
ε + a11

�
ζ (1.17)

where � = a11a22 − a12a21. Substituting Eqns. 1.16 and 1.17 into
Eqn. 1.15 leads to the result that a12 = a21, that is

1

H
= 1

H1

(1.18)

Eqn. 1.18 implies that the following reciprocity relation holds: the
volume of fluid expelled at constant fluid pressure due to an increase in
compressive stress is the same as the unconstrained volume expansion
due to an increase in pore pressure.

Biot also introduced the coefficient 1/M , which is the specific storage
coefficient at constant strain. It is called the constrained 8 specific storage
coefficient and designated Sε . Micromechanical analysis (cf. Section 3.3) will
show that the value of 1/R is determined by the compressibilities of the
frame, the pores, the fluid, and the solid grains. Although 1/R has the same

8 The term constrained is used in soil mechanics (e.g., Lambe and Whitman, 1979) to mean
uniaxially constrained. In this book constrained means three-dimensionally constrained, unless
a qualifying adjective is used.
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units as compressibility and can be expressed in terms of different compress-
ibilities, its physical meaning is that of a storage coefficient.9

The introduction of three coefficients—drained compressibility (1/K),
poroelastic expansion coefficient (1/H ), and unconstrained specific stor-
age coefficient (1/R)—completely characterizes the poroelastic response for
isotropic applied stress. These three coefficients are the three independent
components of a symmetric 2× 2 matrix:



1

K

1

H

1

H

1

R


 (1.10)

The drained compressibility and the unconstrained storage coefficient are
the diagonal components. The poroelastic expansion coefficient is the off-
diagonal component. The symmetry condition means that 1/H has the same
value for the coupling between strain and fluid pressure at constant stress
as it does for the coupling between increment of fluid content and stress at
constant pore pressure. Using Eqn. 1.8 in Eqns. 1.6 and 1.7 yields

ε ≡ δV

V
= 1

K
σ + 1

H
p (1.11)

ζ = 1

H
σ + 1

R
p (1.12)

Two additional coefficients—Skempton’s coefficient B and constrained
specific storage coefficient Sε ≡ 1/M—are now introduced and expressed
in terms of the three already defined. These examples illustrate further that
poroelastic constants are ratios of field variables with specified constraints
on the elementary control volume.
Skempton’s coefficient is defined to be the ratio of the induced pore pres-

sure to the change in applied stress for undrained conditions—that is, no
fluid is allowed to move into or out of the control volume:

B ≡ − δp
δσ

∣∣∣∣
ζ=0

(1.19)

9 Bear (1972, p. 211) in his treatise on flow in porous media referred to Biot’s theory as
follows:

. . . assuming validity of Darcy’s law and the generalized Hooke law [Eqns. 1.6 and 1.7],
a theory was developed for flow in a consolidating medium, without actually defining a
storage coefficient [emphasis added].
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A negative sign is included in the definition because the sign conven-
tion for stress means that an increase in compressive stress, which induces
a pore pressure increase, is a decrease in σ . The subscript equation ζ = 0
is important because it expresses the undrained condition that no fluid is
exchanged with the control volume. Substituting ζ = 0 into Eqn. 1.12 shows
that the induced pore pressure change is proportional to the applied stress:
δp = −(R/H)δσ . Therefore,

B = R

H
(1.20)

If compressive stress is applied suddenly to a small volume of saturated
porous material surrounded by an impermeable boundary, the induced pore
pressure is B times the applied stress. Skempton’s coefficient must lie
between zero and one. Skempton’s coefficient is a measure of how the applied
stress is distributed between the skeletal framework and the fluid. It tends
toward one for saturated soils, because the load is supported by the fluid. It
tends toward zero for gas-filled pores because the load is supported by the
framework.
The constrained specific storage coefficient, or specific storage coefficient

at constant strain, is defined by

Sε ≡
δζ

δp

∣∣∣∣
ε=0

≡ 1

M
(1.21)

where ε is the volumetric strain. The procedure for relating Sε to the previ-
ously defined coefficients is to solve Eqn. 1.11 for σ and substitute it into
Eqn. 1.12. The increment of fluid content is then expressed as a function of
volumetric strain and pore pressure:

ζ = K

H
ε +

(
1

R
− K

H 2

)
p (1.22)

Eqns. 1.21 and 1.22 show that

Sε = Sσ −
K

H 2 (1.23)

Thus, the specific storage coefficient at constant strain is smaller than the spe-
cific storage coefficient at constant stress due to the constraint that the bulk
volume remains constant. A schematic diagram comparing the constrained
and unconstrained storage concepts is shown in Figure 1.6.
The ratio K/H is known as the Biot-Willis coefficient α:

α ≡ K

H
(1.24)
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Figure 1.6: Constrained versus unconstrained storage. (a) Storage at constant strain
is represented by the steel container. When the fluid pressure p decreases from one to
zero, the only water released is from expansion of the water due to its compressibility,
as the steel container does not change in volume. (b) Storage at constant stress is
represented by the rubber balloon. When the fluid pressure p decreases from one
to zero, the water released is due to both the expansion of the water because of its
compressibility and the significant decrease in the volume of the balloon.

Eqn. 1.22 can then be rewritten as

ζ = αε + 1

M
p (1.25)

Therefore, α is the ratio of volume of fluid that is added to storage divided
by the change in bulk volume under the constraint that pore pressure remains
constant.
In summary, three material constants—drained bulk modulus, poroelas-

tic expansion coefficient, and unconstrained storage coefficient—characterize
completely the linear, poroelastic response to volumetric deformation. Other
constants, such as Skempton’s coefficient and the constrained storage coef-
ficient, can be derived from the three originally defined constants. A fourth
independent constant, the shear modulus or the drained or undrained
Poisson’s ratio, is required for the complete poroelastic constitutive equations
when shear stresses are present. Typical values of poroelastic constants for
different rock types are given in Appendix C.

1.9 THERMOELASTIC ANALOGY

A complete mathematical analogy exists between poroelasticity and thermo-
elasticity (Biot, 1941a, 1956c; Rice and Cleary, 1976; Norris, 1992). Ther-
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moelasticity combines the theory of heat conduction with constitutive
equations that couple the stress and temperature fields. Temperature T
corresponds to pore pressure, heat conduction corresponds to fluid flow,
and entropy corresponds to fluid mass. In the thermoelastic equivalent of
Eqn. 1.11, the volumetric strain is a function of mean stress and temperature:

ε = δV

V
= 1

Kt
σ + αtT (1.26)

where 1/Kt is the isothermal compressibility and αt is the volumetric thermal
expansion coefficient [◦K−1]. Identifying 1/Kt in Eqn. 1.26 as the isothermal
(T = 0) compressibility is analogous to identifying 1/K in Eqn. 1.11 as
the drained (p = 0) compressibility. Similarly, αt is the stress-free thermal
expansion coefficient, which corresponds to 1/H , the stress-free poroelastic
expansion coefficient.
The change in specific entropy δs (entropy per unit volume) for small

changes from a reference equilibrium state at temperature To is given by the
thermodynamic relationship

δs = hQ

To
(1.27)

where hQ is the quantity of heat added per unit volume. A change of
entropy is proportional to heat transferred from storage. The analogue of δs
in poroelasticity is the change of fluid mass content δmf . The analogue of
hQ in poroelasticity is ζ , because ζ is a normalized volume of fluid added to
or released from the porous material—just as hQ is a normalized quantity of
heat added to or released from the material. The variable mf is a state vari-
able of a poroelastic system, just as s is a state variable of a thermoelastic
system. On the other hand, ζ and hQ are not state variables because they are
quantities that exist only when a change takes place within the system.
Biot (1956c) expressed the second thermoelastic constitutive equation as

δs = αtKtδε +
cV

To
T (1.28)

where cV is the specific heat at constant volume. Substituting Eqn. 1.27 into
Eqn. 1.28 gives

hQ = ToαtKtε + cV T (1.29)

Eqn. 1.29 can be compared with its poroelastic counterpart (Eqn. 1.25). The
storage coefficient at constant strain, Sε , is analogous to specific heat capacity
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at constant volume, cV . Isothermal conditions (T = 0) in thermoelasticity
are analogous to drained conditions (p = 0) in poroelasticity. Isentropic
conditions (δs = 0) and adiabatic conditions (hQ = 0) are equivalent by
Eqn. 1.27, and hence both isentropic and adiabatic conditions are equivalent
to undrained conditions (δmf = ζ = 0) in poroelasticity.
To summarize, a one-to-one analogy has been established for the linear

constitutive equations of poroelasticity and thermoelasticity. The thermal ana-
logue to stress-free poroelastic strain induced by pore pressure changes (cf.
Eqn. 1.11) is stress-free thermal strain induced by temperature changes. Thus,
the volumetric thermal expansion corresponds to 1/H in Eqn. 1.11. The other
coupling coefficient is the specific heat, which is the amount of heat required
to change the temperature of the body, defined either for constant volume
or constant entropy (adiabatic) conditions. Constant temperature (isothermal)
and insulated (adiabatic) boundary conditions correspond to constant pore
pressure (drained) and no-flow (undrained) boundary conditions, respectively,
in the poroelastic case.
The completion of the analogy between poroelasticity and thermoelastic-

ity requires a consideration of time-dependent transport. The mathematical
form of Fourier’s law for heat transport in response to temperature gradients
is identical to Darcy’s law for groundwater flow in response to pressure gra-
dients. Heat conduction and groundwater flow are both thermodynamically
irreversible processes. However, they are assumed to occur slowly enough
that the system passes through a continuous sequence of equilibrium states.
The thermoelasticity literature (e.g., Boley and Weiner, 1985) is a valuable

resource for poroelasticity because it can reinforce concepts of analogous
poroelastic behavior and also allow some solutions to be transferred directly.
For example, the opening paragraph of Nowacki’s (1986) treatise on ther-
moelasticity is a good statement of the basic coupling between deformation
and temperature:

A deformation of a body is inseparably connected with a change of
its heat content and therefore with a change of the temperature dis-
tribution in the body. A deformation of a body which varies in time
leads to temperature changes, and conversely. The internal energy of the
body depends on both the temperature and the deformation. The science
which deals with the investigation of the above coupled processes, is
called thermoelasticity.

Biot’s increment of fluid content is parallel to the term change of heat content
used in thermoelasticity. In thermoelasticity, temperature changes produce
thermal stresses, but stress changes do not significantly alter the temperature
field in most materials. A similar uncoupling approximation exists in poro-
elasticity, in which the pore pressure field is calculated independently.
Nowacki distinguishes between thermoelasticity and the theory of thermal
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stresses as being the difference between full coupling and the assumption that
the influence of deformation on the temperature field can be neglected. In
poroelasticity it is also useful to make a similar distinction between full cou-
pling and the assumption that changes in fluid pressure affect strain, but not
vice versa.




