Geology 251
Geomorphology

Shorelines of Lake Hitchcock

Lake Hitchcock was a glacial lake dammed by stratified drift at Rocky Hill Connecticut with a bedrock spillway in New Britain Connecticut. The presence of the bedrock spillway ensured that the lake level would be stable as it limited downcutting. The lake existed for approximately 2000-3000 years until the drift dam failed catastrophically causing the lake to drain. The lake formed approximately 13,000 years ago as the glacier retreated from southern Connecticut. At its maximum the lake extended 320km northward to about St Johnsbury in Vertmont.

map from T.M. Rittenour http://www.bio.umass.edu/biology/conn.river/hitchcock.html

Study of a continuous sequence of 1,389 varves from the Hadley Basin and nearby terraces of the Connecticut River provide confirming evidence for the timing of glacial ice retreat and local drainage of Glacial Lake Hitchcock. Based upon extrapolation to the oldest local varve/till contact, the Laurentide ice sheet retreated from the Amherst/Hadley area by 12.8 ka 14 C yrs (15.4 ka cal. yrs BP). An AMS 14C age of $12,370+/-120$ (14.3 $+1.2 /-0.4 \mathrm{cal}$ kyr BP) between Antevs' varve year 5761-5768 and optical luminescence ages between 14.0 cal . ka and 14.4 cal . ka on fossil sand dunes superimposed on the lake floor indicate that Lake Hitchcock drained from this part of the valley by 12.0 ka 14 C yrs (14.0 cal. yrs BP). Grette and Rittenour (2001, NE GSA).

Deltas

The elevation of the topset-foreset contact of deltas indicates the elevation of the surface of lake Hitchcock. The topset-foreset contacts do not all occur at the same elevation. There is a gradual increase in elevations as you move to the north. This is due to differential isostatic rebound that occurred after the lake drained. Koteff et al. (1993) reported a rebound rate of $0.889 \mathrm{~m} / \mathrm{km}$ along a direction of $\mathrm{N} 20.5^{\circ} \mathrm{W}$.

Tilt Landscape

In order to correct for isostatic rebound we will tilt the DEM that represents the current landscape. Tilting will be accomplished by subtracting a tilt surface grid from the DEM. The tilt surface grid will be constructed from a 3 dimensional polygon created in ArcMap. Each vertex in a 3D polygon has three coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). The 3D polygon will then be turned into a Triangular Irregular Network (TIN). Both TINs and GRIDs can be used to display landscapes, but where the GRID is made up of regularly spaced rows and columns of elevation data, the TIN has data points only where there is a change in slope. Since isostatic rebound was linear, we can model it with a 4 point TIN. This will define the tilt surface that we can then turn into a GRID that has tilt values at the same coordinates as the DEM. Since the DEM is a GRID we can now simply subtract the tilt GRID from the DEM using the raster calculator. The result will be a pre-isostatic rebound DEM.

Source of Digital Elevation Models
http://gisdata.usgs.net/ned/default.asp

View and Order Data Sets - International Viewer

Re-project Raw DEM into Mass State Plane Coordinate System

Project Wizard (coverages, grids)

What projection do you want your data to have?

Projections

Choose a projection from the list below. Use the 'Suggest projection' option below if you are unsure which ones are suitable for your dataset.

Space Oblique Mercator	\wedge	The Statelplane Coordinate
State Plane		System is not a projection but a
Stereographic (Equatorial View)		coordinate system that divides
Stereographic (Oblique view)		the United States into over 120
Stereographic (Polar view)		numbered sections or zones.
Times		Each zone has an assigned code
Transverse Mercator		number that defines the
Two Point Equidistant	\checkmark	projection parameters for the

Γ Suggest a projection based on these characteristics of your data:

Extent:	Local
Orientation:	North-South
Latitude:	Mid-Latitude

Help
< Back
Next > Cancel

Create a 3D polygon

Create a new 3D shapefile in ArcCatalog.

Dialogue box to enter direction and distance. Keep track of distances!

A 3-dimensional polygon has 3 coordinate values at each vertex; x, y, and z . The z coordinate is the elevation value. In this exercise you will create a 3D polygon oriented so that one side is perpendicular to the direction of rebound and the other is parallel to it. Elevation values will be assigned on the basis of the rebound rate.

Start editing, create the first vertex then right click to make the second vertex. Use the Direction/Length option and enter the appropriate the appropriate direction and distance. Keep track of distances to ensure a rectangle.

Snap To Feature	
Direction...	Ctrl+A
Deflection...	Ctrl +F
Length...	Ctrl + L
Change Length	
Absolute $\mathrm{X}, \mathrm{Y} . .$.	F6
Delta X, Y...	Ctrl + D
Direction/Length...	CtricG
Parallel	Ctrl +P
Perpendicular	Ctrl+E
Segment Deflection...	F7
Replace Sketch	
Tangent Curve...	$\mathrm{Ctrl}+\mathrm{T}$
Streaming	F8
Delete Sketch Ctrl+Delete	
Finish Sketch	F2
Square and Finish	
Finish Part	

Convert 3D Polygon to Triangular Irregular Network (TIN)

Turn the TIN into a raster by selecting Options - TIN to Raster in 3D Analyst.

Make sure you set the cell size to 30 meters so that it will correspond to the DEM.

The resulting tilt raster is ready to be subtracted from the DEM to create a DEM with the isostatic rebound removed.

Using the Raster Calculator

Use the raster calculator to subtract the isostatic rebound grid from the DEM. This will subtract the rebound value from the elevation value at each cell in the grid.

Use the raster calculator to find the lake shoreline. Use the logical operators to query the DEM to locate the shore of the lake.

Results of the query will be a grid of zeros and ones where the zeros represent cells where the query was false and ones represent cells where it was true. You can also convert this raster to a polygon shapefile.

