
Data Analysis I (EMSC8023)

RSES Course

September 2015





Contents

1 Introduction to the course 7
1.1 Aims of the course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Recommended reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Course concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 MATLAB, a numerical computing environmental . . . . . . . . . . . . . . . . . . . 8

1.4.1 Installing MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Working with MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Setting up MATLAB for the course . . . . . . . . . . . . . . . . . . . . . . . . 10

2 An introduction to statistical thinking 11
2.1 Why do we need statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Hunting for Ceres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Tasting tea in Cambridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Fisher at the Agricultural College . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Do you need statistics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4.1 Professors examine data . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4.2 Life’s ups and downs in the logistic map . . . . . . . . . . . . . . . 15
2.1.4.3 The Monty Hall problem . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.4.4 I don’t feel well, is it XYZ? . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Samples, populations and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 The Canberra taxi game with a twist . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Representative and non-representative samples . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 A historical example of a non-representative sample . . . . . . . . . . . . . . 26
2.3.2 Geological sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 A note on notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Types of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Nominal or categorical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Discrete data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Ordinal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Directional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5 Closed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.6 Interval scale data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.7 Ratio scale data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Statistics and probabilities 33
3.1 Discrete probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Continuous probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



3.2.0.1 Different forms of probability distribution . . . . . . . . . . . . . . 39
3.2.1 An example: the confidence interval on a mean . . . . . . . . . . . . . . . . 40

4 Hypothesis testing 43
4.1 Hypotheses and hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Significance levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1.1 Important points concerning significance levels . . . . . . . . . . . . 48

4.2 An example: Meltwater particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Review of the F -test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Now it’s your turn: Mesozoic belemnites . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Other hypothesis tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Meltwater particles revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Correlation and regression 59
5.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Sample correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 The coefficient of determination, r2 . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.3 Population correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.4 Test for significance of a correlation coefficient . . . . . . . . . . . . . . . . . 64
5.1.5 Confidence interval for the population correlation . . . . . . . . . . . . . . . 65
5.1.6 The influence of outliers on correlation . . . . . . . . . . . . . . . . . . . . . 66
5.1.7 Spurious correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.1 Calculating a and b for a sample . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 The influence of outliers on regression . . . . . . . . . . . . . . . . . . . . . . 69
5.2.3 Confidence interval for the slope . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.4 Confidence interval for the intercept . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.5 Making predictions from a regression model . . . . . . . . . . . . . . . . . . 71

5.2.5.1 Predicting a mean . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.5.2 Predicting a single future observation . . . . . . . . . . . . . . . . . 74
5.2.5.3 Make sure you choose the correct interval . . . . . . . . . . . . . . 76

5.2.6 Choosing the independent (X) and dependent (Y ) variables . . . . . . . . . 76
5.2.6.1 The Reduced Major Axis line . . . . . . . . . . . . . . . . . . . . . 82

5.2.7 Extending linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.7.1 Reciprocal relationships . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.7.2 Power laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Selecting the polynomial order . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Estimating the quality of the polynomial fit . . . . . . . . . . . . . . . . . . 94
5.3.3 Polynomial confidence and prediction intervals . . . . . . . . . . . . . . . . . 94

5.4 Extra example codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.1 Prediction intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.2 Predicting iris length from width . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.3 Selecting a copper polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4



6 Multiple linear regression 99
6.1 Moving to higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 The basics of multiple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Identifying significant regressors and making predictions . . . . . . . . . . . 103
6.2.1.1 An example: Plate tectonics . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.3 The taste test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Cluster analysis 115
7.1 The principals behind cluster analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.1 Distance as a measure of similarity . . . . . . . . . . . . . . . . . . . . . . . 116
7.1.2 Data normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.1 An example: Fisher’s irises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.2 Disadvantages of dendrograms . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Deterministic k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3.1 Visualizing cluster solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3.2 What input data should you use? . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3.3 How many clusters should be included in a model . . . . . . . . . . . . . . . 128

7.3.3.1 Silhouette plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 Now it’s your turn: Portuguese rocks . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Dimension reduction techniques 137
8.1 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1.1 Data normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.1.2 Building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.1.3 Oreodont skull measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.1.4 Now it’s your turn: Fisher’s irises . . . . . . . . . . . . . . . . . . . . . . . . 151
8.1.5 A typical application: Marine micropaleontology . . . . . . . . . . . . . . . . 152

8.2 Nonlinear mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2.1 How does it work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.2.2 NLM example: Fisher’s irises . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.2.3 NLM example: Portuguese rocks . . . . . . . . . . . . . . . . . . . . . . . . 155

8.2.3.1 Cluster analysis and NLM . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.4 Nonlinear dimensionality reduction by locally linear embedding . . . . . . . 159
8.2.5 Nonlinear principal components analysis . . . . . . . . . . . . . . . . . . . . 160

9 Analysis of compositional data 163
9.1 Absolute and relative information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.2 Properties of compositional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.2.1 The simplex as a sample space . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.3 Important aspects of compositional analysis . . . . . . . . . . . . . . . . . . . . . . 168

9.3.0.1 Distances between points in a simplex . . . . . . . . . . . . . . . . 169
9.3.0.2 Straight lines in a simplex . . . . . . . . . . . . . . . . . . . . . . . 169

9.3.1 Statistics without Euclidean distances . . . . . . . . . . . . . . . . . . . . . . 170
9.4 Solving the problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.4.1 Scale invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5



9.4.2 Subcompositional coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.5 Log-ratio analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.5.1 Finding an average composition . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.5.2 Principal components of compositional data . . . . . . . . . . . . . . . . . . 176
9.5.3 Confidence regions for compositional data . . . . . . . . . . . . . . . . . . . 179
9.5.4 Regression and compositional data . . . . . . . . . . . . . . . . . . . . . . . 182

9.6 Outstanding issues in compositional analysis . . . . . . . . . . . . . . . . . . . . . . 187
9.6.1 Dealing with zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.7 Solution: Arctic lake exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10 Recommended reading 191
10.1 Light reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.2 General statistics for geoscientists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.3 Statistics with computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.4 More advanced texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.5 Topics we discussed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6



Years of geological research and exploration using traditional
methods have discovered a lot of relatively obvious theoretical
principals and economic deposits; we have to use more sophisti-
cated and sensitive techniques to uncover what remains!

Swan and Sandilands

1
Introduction to the course

In this introduction we’ll take a brief look at the aims of the course and discuss practical issues
such as software installation, recommended reading and course assessment.

1.1 Aims of the course

Our aims are pretty simple and of course they need to be limited because it is impossible to teach
you all the statistics methods you will need in such a short course. During the course we’ll address
3 main issues.

1. Helping you to think in a statistical manner.

2. Providing an introduction to statistical concepts.

3. Giving a basic introduction to a small number of statistical techniques.

The overarching aim of the course is more broad. Hopefully you’ll see how useful statistics are and
after the course you’ll have the confidence to use statistics independently and apply the methods
most appropriate for your research problems.

1.2 Recommended reading

If you simply go to the library and find a book called something like “An Introduction to Statistics”
you’ll probably discover that it’s hundreds pages of impenetrable equations that don’t seem to give
you an introduction unless you’re an expert already. Fortunately, some very good books have been
written that consider statistics in a geological context. In this way the situations and examples
should be more familiar and you’ll be able to see how statistics can be applied to the problems
that you are working on. Of course there are also some very good statistics tutorials available for
free on the internet, but it can take a long time to find them. I’ve included a recommended reading
list at the end of the course notes that will hopefully guide you in the right direction. Some of the
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recommended textbooks can also be downloaded for free thanks to the ANU’s library subscription
and I’ve marked these in the reading list.

1.3 Course concept

The course is designed to be interactive, in terms of both discussing problems and computer
exercises that will show you how certain statistical techniques can be applied to data. Throughout
the text I’ve provided code snippets that show how a certain task can be performed and these
can act as a template later on when you want to work on your own problems. Don’t worry if you
don’t have any programming experience, we’ll be starting right from the beginning and I’ve added
lots of text describing what each line of the code does. Also, think about what you are doing, you
won’t learn anything by blindly copying the examples. Instead, try to see how each step in the
analysis works and how it is related to the code in the examples.

One key point is not to work ahead of the material that is being discussed. We’ll need to
consider important points and if you’re to understand them, it means being involved with the
discussion rather than typing away like crazy trying to complete all the examples. There are no
prizes for finishing the examples first, so there’s no point in trying to rush through them.

1.4 MATLAB, a numerical computing environmental

Throughout the course we’ll be using MATLAB intensively. It’s no problem if you haven’t used MATLAB

before, we’ll start with very simple problems and gradually address more complicated tasks as we
progress through the course. MATLAB provides a wide variety of statistical and graphical techniques
and I selected it for this course for a number of reasons.

� MATLAB is based on an interpreted language, this means we can work step by step through a
series of commands without the need for compiling complete sets of code.

� MATLAB is based around so-called inbuilt functions that provide quick access to thousands of
different data processing methods.

� MATLAB has a large number of inbuilt statistical functions and a large user community that
contribute additional functions.

� MATLAB contains versatile graphics libraries allowing you to view your data in a variety of
ways (visualization is an important part of statistics).

� The ANU has a very flexible MATLAB licence, which means you can install it on your own
computers (Windows, Mac, Linux).

1.4.1 Installing MATLAB

If you don’t have MATLAB installed then you just need to go to the ANU’s MATLAB page:

http://matlab.anu.edu.au/
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and select Installing MATLAB from the menu on the left of the screen. You can then down-
load the most recent MATLAB installer. If you are working with your personal laptop you should
follow the Designated Computer licence install procedure to install and activate MATLAB.

Once you have MATLAB installed and you start the software you’ll see a screen that looks
something like the one in Figure 1.1

Figure 1.1: A screenshot of MATLAB. You can interact with MATLAB by typing commands at
the fx prompt in the command window.

1.4.2 Working with MATLAB

You can interact with MATLAB by inputting typed commands in the console after the >> prompt.
When we use commands to perform statistical analysis I’ll place them in a gray box to show that
they should be typed directly into MATLAB, for example, if we want to perform a very simple cal-
culation, type the following command at the prompt and hit enter.

Example code: 1

>> 1 + 1

Hopefully MATLAB will give you the correct answer and if you want to confirm this look at Figure 1.2
which shows the mathematical proof by Whitehead and Russell (1910) of the calculation we’ve
just done.
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Figure 1.2: That’s a relief, mathematicians agree that 1+1 does indeed equal 2.

Sometimes I’ll also include the answers that MATLAB writes to the screen within the gray boxes.
In such cases you can see that this is output rather than a command because the prompt symbol
is missing. For example, repeating the calculation from above.

Example code: 2

>> 1 + 1

ans = 2

Finally, for most of the commands I have also included so-called comments. A comment is a
piece of text that can be included in the command, but which will be ignored by MATLAB. This
might seem a bit pointless, but comments provide a way in which to annotate commands and
provide an explanation of what they are doing. The comment symbol in MATLAB is %, which means
any text after the % will be ignored by MATLAB.

Example code: 3

>> 1 + 1 % does 1 + 1 really equal 2, let's check

ans = 2

Therefore when you’re typing in the commands from the examples the comments provide an
explanation of what the command does, but you don’t need to include the comments in the com-
mand.

1.4.3 Setting up MATLAB for the course

Finally, we’ll be using a number of example data sets during the course and we need to make
sure that MATLAB knows where to find them. You should download the zip file that contains the
data files (stored in MATLAB’s the mat format) and extract the files to an appropriate folder on
your system. Once you’ve started MATLAB you can simply click the working directory banner and
navigate to the folder in which you extracted the data files. Once this is set up, MATLAB will know
where to look for the data files you want to load.
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The combination of some data and an aching desire for an answer
does not ensure that a reasonable answer can be extracted from
a given body of data.

John Tukey

2
An introduction to statistical thinking

In this chapter we’re going to look at a wide variety of topics that provide a foundation for the
rest of the course. Hopefully I can justify to you that statistics are an essential tool for anyone
studying the natural sciences and then we’ll consider how we start to think in a statistical way
about different situations and types of data.

2.1 Why do we need statistics

It is not uncommon to hear scientists say that they “hate” or “don’t need” statistics. In such
conversations it normally only takes a few minutes before a quote from the 19th Century British
Prime Minister Benjamin Disraeli is uttered:

There are three kinds of lies: lies, damned lies, and statistics.

There is no doubt that statistics are used to lie to us on a regular basis, just think of the statistics
quoted in the TV commercials of companies trying to sell us things. As scientists, however, as
long as we use statistics properly, they form the most powerful tool we have to separate fact from
fiction.

Some scientists will say that they can simply look at plots of their data and see all the infor-
mation they need to make inferences and draw conclusions about the system they are studying.
Our brains seem to be very good at spotting patterns in the real world and often we can convince
ourselves that we can see a certain pattern in a given data set (normally the pattern that sup-
ports our preconceived ideas). In this brief introduction we’ll look at a few historical examples to
demonstrate how statistics are an essential tool to scientists and the mistakes that can be made
when a proper statistical analysis is not undertaken.

2.1.1 Hunting for Ceres

At the start of the year 1801, the Italian astronomer Giuseppe Piazzi discovered a new planet
positioned between Mars and Jupiter (we now know that the new eighth planet is actually a
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small asteroid, Figure 2.1). The plant was christened “Ceres” and astronomers started to track its
position.

Figure 2.1: The orbit of Ceres.

After just 42 days Ceres disappeared behind the Sun when only 19 imprecise observations of
its path had been made. Based on this scant amount of data Giuseppe Piazzi made predications of
when and where Ceres would reappear out of the Sun’s glare. However, Ceres didn’t reappear where
expected and the new planet was “lost”. The 23 year old German, Carl Friedrich Gauss, heard
of this problem and using statistical methods he had developed when he was just 18, extracted
sufficient information from the existing observations to make a prediction of the position of Ceres
based on Kepler’s second law of planetary motion (Figure 2.2).

Figure 2.2: A (very poor) reproduction of the sketch in Gauss’ notebook that shows his calculated
orbit for Ceres. The Sun is positioned in the center of the sketch and the orbit of Ceres is connected
to the Sun by two straight-lines.

The prediction Gauss made was close enough that Ceres was found again and it made him a
scientific celebrity. Gauss’ key insight was the observations of Ceres’ motion would be normally
(bell-shaped) distributed such that observations towards the middle of the distribution should be
considered as more reliable than those towards the extremes. Maybe this idea seems obvious to us

12



now, but at the time this statistical insight allowed Gauss to identify patterns in the Ceres data
that everyone else had missed.

The normal distribution, also known as the Gaussian distribution, appears commonly in nature
(hence the name) and we’ll be looking at it in more detail later.

2.1.2 Tasting tea in Cambridge

At an afternoon tea party at Cambridge University in the late 1930’s one of the guests announced
that “Tea tastes different if you put the milk in first”. The professors around the table picked up
on the lady’s comment and started to discuss how you could design an experiment to test this
claim. Clearly they would need to prepare some tea without her looking and then test if she could
correctly identify on taste alone which cups had been made with the milk in first.

When we think about this, designing the experiment is actually more difficult than it sounds.
For example if we gave the lady just one cup of tea she has a 50% chance of guessing correctly
even if she can’t really tell the difference. Alternatively, if we prepared two cups of tea, one with
the milk in first and one with the milk in last, the lady still has a 50% chance of getting the right
answer by luck as long as she knows in advance that the two cups are different. Let’s take another
example, imagine we make up 10 different cups and the lady tastes them in a random order. If
she only gets 9 out of 10 correct is that a sufficiently high number to conclude that she really can
taste the difference? What if she had only got 7 out of 10, is that good enough to conclude that
she can taste the difference?

The key advantage of a statistical approach is that we take what appears to be a subjective
decision, e.g., is 9 out of 10 enough, and with a properly designed experiment we can reach an
objective conclusion. Therefore, what any given investigator believes to be a sufficient number of
correct identifications becomes unimportant and instead the statistics guide the criteria so that an
objective decision can be made. In the experiment designed by the Cambridge professors the lady
tasted 50 randomly order cups of tea and identified correctly wether the milk had been added first
or last in all of them (a pretty convincing result).

2.1.3 Fisher at the Agricultural College

One of the people at the Cambridge tea party was Ronald Aylmer Fisher who made a number of
very important contributions to a variety of topics in statistics. Early in his career Fisher had been
contacted by Sir John Russell who was head of the Rothamsted Agricultural Experimental Station
near London. For over 90 years the station had been running experiments on different types
of fertilizers to see if they could improve crop yields. Unfortunately, the experiments had not
been performed in a consistent manner, with each researcher designing their experiments without
talking to the other researchers and developing their own methods for taking variables such as
annual rainfall into account. This meant that although the Station had a wealth of data it was
extremely difficult to extract a consistent picture from it. Fisher published a series of landmark
works based on the Rothamsted data (given the catchy title “Studies in Crop Variation”), but it
took one of the greatest statisticians who ever lived to work through the experiments and place
them in a consistent statistical framework.

If you are not one of the greatest statisticians of all time then it’s essential that you think about
the statistical framework that you will need to analyze your results and design your experiments
around that framework. If you simply perform a series of experiments and then decide you need
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to “do some statistics” you’ll probably struggle just like the researchers at Rothamsted. To quote
Fisher:

To consult the statistician after an experiment is finished is often merely to ask him to conduct a
post-mortem examination. He can perhaps say what the experiment died of.

2.1.4 Do you need statistics?

As you might have guessed from the three examples above, I’m going to suggest that you do need
statistics. I can’t think of any field in the geosciences where, at the most basic level, information is
stored in some form other than numbers. Therefore we have to be comfortable dealing with large
(sometimes massive) numerical data sets.

As we saw in the example of Fisher at the Agricultural College, if we don’t think in a statistical
way we can easily end up wasting our time. Imagine that you suddenly discovered that your work
had been in vain because rather than performing a proper statistical analysis you just formed
conclusions on the basis of your own subjective analysis of the data. Our brains seem to be very
good at spotting patterns, sometimes this can be useful, but often in the case of data analysis we
can convince ourselves that certain patterns exist that really don’t. There’s not much we can do
about this, it just seems to be the way our brains are wired, but to make advances in science and
try to limit the mistakes we make, we should take an objective (i.e., statistical) approach rather
than relying upon subjective intuition. To try to convince you how bad our intuition can be, I’m
going to give two examples.

2.1.4.1 Professors examine data

David Warton, a statistician from the University of New South Wales ran an experiment to assess
how well structures in data could be identified simply by visual inspection of plots rather than
using detailed statistical methods. Plotted data sets were presented to 6 statistics lecturers and
in less than 50% of the cases could they correctly identify certain structures that were known to
exist in the data. This provides a good example of why we cannot simply rely on our intuition to
interpret experimental data. We can run a similar experiment now. In Figure 2.3 you can see two
collections of points, which ones are positioned randomly and which are not?

Figure 2.3: Which set of data points are distributed randomly, the ones in the left panel or the
ones on the right?
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2.1.4.2 Life’s ups and downs in the logistic map

The world is a complex place and it’s difficult for us to appreciate this just by visual inspection
of data sets. Let’s consider a simple system and see just how complex it can be. If you imagine
a population within an enclosed environment, for example goldfish in a garden pond, there are a
number of factors that will control how the population grows or shrinks from one generation to
the next. For example:

� Food supply

� Sexual reproduction

� Disease

� Predation

� Competition with other species

� ... and many more

A number of simple theories have been formulated to consider how the population will change from
one generation to the next, but they rely on unrealistic assumptions such as unlimited food supply
and free reproduction. When ecologists studied real animal populations they found a number of
different patterns as a function of time. Using a value of 1 to represent the maximum possible
population and 0 to represent extinction, three basic patterns of “stable”, “periodic” and “random”
behavior were defined.
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Figure 2.4: A “stable” population moves towards a constant equilibrium value.
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Figure 2.5: A “periodic” populations oscillate between two or more values.
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Figure 2.6: “Chaotic” populations oscillate between two or more values.

Ecologists believed that two possible mechanisms could have been responsible for the observed
patterns. If the population is in equilibrium with the environment then “stable” and “periodic”
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patterns could be expected. However if the population is heavily influenced by unpredictable
environmental factors the behavior of “chaotic” populations could be explained. These two systems
are however very different, so which is correct?

In the 1950’s ecologists developed the so-called “logistic equation”, which was designed to model
population behavior, it contains a term to express population growth from one generation to the
next and a second term which restricts the population when it becomes too large.

xnext = r × xinitial × (1− xinitial) (2.1)

where xinitial is this year’s population, xnext is next year’s population and r is the “biotic potential”.
The biotic potential influences how much the population changes from one generation to the next,
it will be controlled by factors such as food supply, competition, etc. The term (1− xinitial) keeps
the growth within the defined limits because as x increases, (1− x) decreases. Some key features
of the logistic equation are:

� When x is low the population grows rapidly.

� At intermediate levels of x the population growth is almost zero.

� At high levels of x the population crashes.

Using the logistic equation is is possible to produce “stable”, “periodic” and “random” behavior
simply by changing the constant, r, in the equation, therefore we have one mechanism to describe
all three types of behavior. With increasing computing power, it became possible to study the
dynamics of the Logistic equation. The investigation is very simple.

1. At random choose a starting population value 0 < x < 1

2. At random choose a value of r in the range 0 < r < 4

3. Calculate the final population after a large number of years (say 2000)

4. Plot a point on a chart at position (r, xfinal)

When this procedure is repeated a large number of times to map the behavior of the logistic
equation we produce the so-called logistic map.
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Figure 2.7: The Logistic Map.

Different regions of the map tell us different things about the behavior of a population which
obeys the logistic equation and a zoom-up shows how detailed the structure is with repeating
patterns.
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Figure 2.8: The Logistic Map.
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With r in the range 0 < r <∼ 1 the population will always become extinct, no matter what
the starting size of the population is.
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Figure 2.9: The evolution of a population with xinitial = 0.8 and r = 0.9

With r in the range ∼ 1 < r <∼ 3 the population reaches a steady single value no matter what
the starting value of xinitial is.
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Figure 2.10: The evolution of a population with xinitial = 0.02 and r = 2.5

With r in the range ∼ 3 < r <∼ 3.42 the population shifts between two values. This is called
“period two” behavior.
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Figure 2.11: The evolution of a population with xinitial = 0.02 and r = 3.25
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With r in the range ∼ 3.42 < r <∼ 3.57 the population shifts between four values. This is
called “period four” behavior.
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Figure 2.12: The evolution of a population with xinitial = 0.02 and r = 3.5

With r in the range ∼ 3.57 < r <∼ 4 the population shifts between many values. This is called
“chaotic” behavior.
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Figure 2.13: The evolution of a population with xinitial = 0.02 and r = 3.99

2.1.4.3 The Monty Hall problem

The following is more of a problem in probability theory than statistics, but it does demonstrate
just how far off our intuition can be when it comes to thinking about how even apparently simple
systems work. The Monty Hall Problem was brought to fame when discussed in Parade magazine
by the world’s “most intelligent” person Marilyn vos Savant (she has a quoted IQ of 228). The
statement of the problem is as follows:

Suppose you’re on a game show, and you’re given the choice of three doors: Behind one door
is a car; behind the others, goats. You pick a door, say A, and the host, who knows what’s behind
the doors, opens another door, say C, which has a goat. He then says to you, “Do you want to
pick door B?” Is it to your advantage to switch your choice?

Figure 2.14: In search of a new car, the player picks a door, say A. The game show host then opens
one of the other doors, say C, to reveal a goat and offers to let the player pick door B instead of
door A.
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So here’s the big question, if you want to maximize your probability of winning a car rather
than a goat, should you stick with the door you selected first, switch to the alterative door, or
doesn’t it make any difference which door you select?

2.1.4.4 I don’t feel well, is it XYZ?

A patient with no symptoms participates in routine examination. They test positive for disease
XYZ. Apart from the test result, you know nothing else about the patient. You do, however, have
information about the prevalence of XYZ and the effectiveness of the diagnostic test. Specifically,
you know:

1. The probability that a person has disease XYZ is 1%.

2. If a person has XYZ, the probability they test positive is 90%.

3. If a person does not have disease XYZ, the probability they test positive is 9% (“false alarm”).

The patient asks you what proportion of people who receive a positive test result actually have
XYZ. How should you answer:

� nine in 10

� eight in 10

� one in 10

� one in 100

2.2 Samples, populations and assumptions

One of the key aims of statistics is to make inferences about a population based upon the infor-
mation contained in a sample of the population. To form these inferences it is essential to make
assumptions about how both the sample and the population behave. In the next sections we’ll
look at a few examples to see how the relationship between samples, populations and assumptions
works.

2.2.1 The Canberra taxi game with a twist

In Canberra each taxi is given a licence plate number “TX some number”. This has led to a game
whereby locals try to spot all of the taxis in numerical order. So you start by trying to spot taxi
“TX 1”, then some months later you may see “TX 2”, then “TX 3”, etc. Of course you have
to spot them in sequence, if you see “TX 2” before you have seen “TX 1” then it doesn’t count.
We’re going to play another game based on the numbers of taxi license plates that will (hopefully)
provide some insights into how to think in a statistical manner.
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Imagine I arrive in Canberra, go to a street and write down the numbers of the first 5 taxis
that I spot. For example (once I’ve sorted them into numerical order):

73, 179, 280, 405, 440.

Now, on the basis of these numbers I want to address the question:

What is the total number of taxis (N) in the city?

Here we are using a sample (our 5 taxi numbers) to draw inferences concerning a population (all
the taxis in the city). Clearly the problem cannot be solved with the provided information, however,
we can make an estimate of N using the information we have, some necessary assumptions, and
some simple statistics. The key point is that unless we are very lucky, our estimate of N will be
incorrect. Don’t think of statistics in terms of right or wrong answers, think of statistics in terms
of better or worse answers. So what we are interested in is a good estimate of the total number of
taxis.

If we just take the taxi numbers at face value we can see the problems with forming a good
estimate. Given the numbers above, one person may say:

The highest taxi number is 440, therefore I can say that there must be at least 440 taxis in
Canberra.

A reply to this estimate could be:

What if some taxi numbers in the sequence between 1 and 440 are missing (i.e., the taxis are
not numbered in a continuous sequence), then there could be less than 440.

Or alternatively:

What if some taxis share the same number, then there could be more than 440.

An even more conservative estimate would be:

I’ve seen 5 taxis on the street therefore there must be at least 5 taxis in Canberra.
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To which we could ask:

What if the driver of a taxi simply keeps driving around the block and each time gets out of
their taxi and swaps the licence plate with another they have stored in the car? That way you could
see 5 different licence plate numbers, but it would always be the same taxi.

Okay, this last argument might be unreasonable, but it does show that we can come up with
arguments that will only allow us to estimate that the total number of taxis in Canberra is 1. It
goes without saying that 1 is a very bad estimate of the population size. Therefore we can see that
simply spotting 5 taxis doesn’t help too much in estimating the size of the population unless we
make some basic assumptions about how the taxi numbers behave. Such assumptions could be:

� The numbering system starts with Taxi 1.

� The numbering system runs in sequence with no missing numbers.

� No two taxis have the same number.

� Taxi numbers are distributed uniformly through the city.

These simple assumptions will form the basis of our assessment. It is important to realize that if
our assumptions are incorrect or we’ve missed a key assumption then our estimate may be poor.

There are two simple ways we can estimate the number of taxis, the median estimate and the
extreme estimate. In the median estimate we find the middle number in the sequence, which is 280,
and calculate that the difference between the median value of the sample and the assumed first value
of the population (taxi number 1) is 279. Therefore we can estimate that the difference between
the median value and the largest taxi number in the population is 280+279 = 559 (Figure 2.15).
Notice that this approach employs all of the assumptions listed above.

73 179 280 405 440
?

Median estimate = 2 * Median - 1
Median estimate = 2 * 280 -1 = 559

Figure 2.15: Schematic diagram showing how the median estimate is formed for the taxi number
problem.

The extreme estimate looks at the edges of the data rather than the center. The lowest number
in our sample is 73 therefore there is a difference of 72 between the first number in our sample
and the assumed lowest number in the population (taxi number 1). We then look at the highest
number in our sample and add 72 to make an estimate of the population size, so 440+72 = 512
(Figure 2.16).
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73 179 280 405 440
?

Extreme estimate = 440 + 72 = 512

Figure 2.16: Schematic diagram showing how the extreme estimate is formed for the taxi number
problem.

You can see that our two estimates are different and of course if we repeated the experiment we
would collect 5 different numbers in our sample and obtain different estimates for the population.
The key point, however, is that we are using a sample to draw inference concerning the population.
To do this we make estimates that rely on assumptions. If we have bad assumptions then our
estimate (unless we are very lucky) will also be bad. There may be more that one method with
which to make an estimate and these methods cannot be expected to yield the same result (although
you would hope that they are consistent).

It may seem that the taxi number problem is a trivial example and we could simply telephone
the taxi company and ask them how many taxis they have. This was, however, an important
problem in World War II when the Allies could make estimates of how many missiles the German
forces had at their disposal. In order to keep track of their weapons the Germans painted sequential
serial numbers on the outside of their missiles. I’m guessing that in this situation, Eisenhower
couldn’t telephone Hitler and ask him how many missiles he had, so instead soldiers were ordered
to record the serial numbers of any German missiles that they captured. These numbers were
returned for analysis and predictions of the total number of German missiles could be made. Out
of interest, the median estimate outperforms the extreme estimate and it didn’t take long before
the Germans stopped painting sequential numbers on the sides of their missiles.

2.3 Representative and non-representative samples

In our Canberra taxi number problem it was quite simple to collect a sample of taxi licence plate
numbers. The primary requirement of any sample is that it is representative of the population.
For example we could collect taxi numbers on a street in the north of Canberra. If, however, taxis
with numbers lower than 500 worked in the north of the city and taxis with numbers greater than
500 worked in the south, then clearly our sample would not be representative of the population
of the taxis in the city. It would though be representative of the taxi numbers in the north of the
city.

2.3.1 A historical example of a non-representative sample

In the run-up to the 1936 U.S. election the Literary Digest (a popular magazine) decided to
undertake a poll to predict who would be the new president. The magazine selected 10 million
people to include in the survey by picking from 3 lists of names; their own subscribers, registered
car owners and telephone users. In total 2.4 million people responded to the poll, which is a large
sample given that the total population at the time was only around 130 million. The results of the

26



poll predicted a clear win for the Republican candidate, Alf Landon. On election day, however,
the Democratic candidate Franklin D. Roosevelt won with a landslide victory. So why was the
result of the Literary Digest poll so wrong?

Figure 2.17: The front cover of the issue of the Literary Digest in which they announced the result
of the election poll.

The simple answer is that the sample of people surveyed by the Literary Digest was not rep-
resentative of the population as whole. The election took place during the Great Depression and
lists of people who had magazine subscriptions and owned cars and telephones were biased towards
the middle classes with higher than average incomes. In general, the middle classes favored the
Republican Party, hence the result of the pole suggested a win for Alf Landon. This is a clear ex-
ample of a nonrepresentative sample leading to a poor statistical estimate. Contrastingly, George
Gallup performed a similar poll for the same election, which involved a much smaller sample size,
but selected the voters to specifically obtain a demographically representative sample. On the
basis of his poll, Gallup predicated the outcome of the election correctly.

2.3.2 Geological sampling

In the geosciences, collecting a representative sample can be challenging because our access to
rocks, etc., is limited. The design of a sampling scheme should always be given careful thought
and we can examine the relationship between the population and available samples in geological
terms. We will only look at this briefly because sampling design is something that can change quite
dramatically according to the specifics of a field and the questions being asked. One important
point to stress is that throughout this course, when we use the word sample it implies a statistical
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sample rather than a geological sample. You’ll notice that when we discuss geological samples I
will use words like specimen to try to avoid any confusion.

The Hypothetical Population corresponds to the complete geological entity (Figure 2.18).
In some cases the hypothetical population only exists in theory because parts may have been lost
to erosion, etc. The Available Population represents the existing parts of the geological entity.
Finally the Accessible Population is the material which can be collected to form a sample and
therefore is used to represent the entity. Given that one of the main aims of statistics is to use
statistical samples in order to draw conclusions concerning populations it is essential to consider
if the accessible population is representative of the hypothetical and available populations.

Figure 2.18: A cross-section showing the different populations that can be considered in a geological
scenario.

2.3.3 A note on notation

Given that we will be using information in a sample to draw inferences concerning a population it
is important to think about using a consistent notation. The system we’ll employ is that where a
parameter derived for a sample is represented with a letter, the corresponding parameter for the
population will be given the equivalent Greek symbol. For example the standard deviation of a
sample will be defined as s, so the standard deviation of the population will be σ. In this way is
it easy to distinguish if we are referring to a sample or a population. There are a few exceptions
in this system, the most common one is that for a sample, X, the mean of the sample is X̄, but
the mean of the population is µ. Hopefully such cases won’t cause too many problems and the
explanation given in the text should clear up any confusion.

2.4 Types of data

Geoscience data can come in a variety of different forms. As an example you might work with
micropalaeontological data which could be expressed as:

� Presence or absence of a given taxon.
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� Percentage data giving a relative abundance of the taxa.

� Concentrations of each taxon.

Certain statistical approaches can only be applied to specific forms of data. Therefore the type
of statistical technique we must use will depend on the type of data that we have available. It is
important to consider what type of data you have and what limitations that places on you. In
this section we’ll look quickly at some of the different types of data and the problems that may be
associated with them.

2.4.1 Nominal or categorical data

This is data that cannot be ordered, for example, a list of fossil species from a limestone bed or
the minerals identified in a thin section. Such information can be converted into a binary form of
“presence versus absence”. For example, the assemblage of benthic foraminifer taxa in a sediment
could be represented by their presence or absence.

Taxon Presence Binary representation
Asterigerina present 1

Archaias present 1
Laevepeneroplis absent 0

Textularia present 1
Rosalina absent 0

Miliolinella present 1
Quinqueloculina present 1

Triloculina present 1

There are special statistical methods for nominal data, but we won’t be dealing within them
in this course.

2.4.2 Discrete data

This data can only be represented by integers, for example, the frequency of occurrence per space
or time interval (Figure 2.19).

Figure 2.19: The number of earthquakes per hour is a discrete data set (clearly you cannot have
half an earthquake).
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2.4.3 Ordinal data

With ordinal data the values are used to denote a position within a sequence. This allows a
qualitative, but not quantitative, rank order. A classical example of ordinal data is Mohs scale of
mineral hardness.

Hardness Mineral Absolute Hardness
1 Talc 1
2 Gypsum 2
3 Calcite 9
4 Fluorite 21
5 Apatite 48
6 Orthoclase Feldspar 72
7 Quartz 100
8 Topaz 200
9 Corundum 400
10 Diamond 1500

We can see that corundum (9) is twice as hard as topaz (8), but diamond (10) is almost four
times as hard as corundum. Therefore the hardness rankings in Mohs scale only denote a sequence
but do not tell us about the absolute hardness.

2.4.4 Directional data

Directional data are normally expressed as angles, for example the flow direction of a lava. This
means we need to consider data in terms of circles (in the 2D case) or spheres (3D case). We
can see that even with something as simple as taking the mean of two directions we cannot apply
statistics without careful thought (Figure 2.20).

340o 20o0o 340o 20o

180o
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2

Figure 2.20: An example of the problems associated with directional data. If we calculate the
average of two angles using simple arithmetic, the value may not be the one we expect!

2.4.5 Closed data

Closed data are normally in the form of percentages, parts per million, etc. The important point
is that the values will always total to a constant, for example, 100%. A common example of closed
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data is sediment grain sizes that are split into sand, silt and clay fractions, which are then expressed
as percentage abundance and plotted in a ternary diagram (Figure 2.21). Clearly the sand, silt and
clay fractions for any given sample must add up to 100%. Closed data are surprisingly common
in the geosciences and we’ll be paying special attention to them in Chapter 9.

Figure 2.21: A ternary diagram showing the classification of sediments depending on their compo-
sition of sand, silt and clay. Notice that all positions in the diagram correspond to compositions
that add to 100%.

2.4.6 Interval scale data

These are data relating to a scale, where the zero point does not represent the fundamental
termination of the scale (Figure 2.22).

0 1 2 3 4-1-2-3-4

Figure 2.22: An example of an interval scale. Notice that the values are equally spaced but negative
values are also possible because zero does not represent the end of the scale.

The classic example of interval scale data is the Celsius temperature scale. Ask yourself the
question:

It was 0oC today, but tomorrow it will be twice as warm. What will the temperature be tomor-
row?

This demonstrates that calculations such as ratios are meaningless for interval scale data.
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2.4.7 Ratio scale data

Ratio scale data is the best form of data for statistical analysis. The data is continuous, the zero
point is fundamentally meaningful, and as the name suggests, ratios are meaningful. An example
of ratio scale data is the Kelvin temperature scale. Ask yourself the question:

It was 273 K today, but tomorrow it will be twice as warm. What will the temperature be to-
morrow?

Length is also a form of ratio scale data, so if a fossil is 1.5 meters long, how long would a fossil
be that is half the size?
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In no other branch of mathematics is it so easy for experts to
blunder than as in probability theory.

Charles Sanders Peirce (Mathematician)

Jetzt stehen die Chancen 50:50 oder sogar 60:60.
(Now our chances are 50:50, if not even 60:60.)

Reiner Calmund (German football coach)

3
Statistics and probabilities

Statistics and probability are very closely related. A key part of statistics is the examination and
use of so-called probability distributions which provide a tool with which to make interferences
concerning a population based on the information contained in a sample. In this section we’ll look
at probability distributions in a general way and see what information they can and can’t give us.

3.1 Discrete probability distributions

We’ll start with a somewhat formal definition of discrete probability distributions and then look
at some practical examples:

A discrete random variable takes on various values of x with probabilities specified by its prob-
ability distribution p(x).

Consider what happens when we roll a fair 6 sided die, what is the probability that we will
throw a given number? Because the die is fair we know that there is an equal probability that it
will land on any of its 6 sides, so the probability is simply 1/6 = 0.167. We can represent this
information with an appropriate discrete probability distribution (Figure 3.1).
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Figure 3.1: The discrete probability distribution describing the probability, p, of obtaining a given
value, x, when a fair die is thrown once.

The probability distribution looks exactly like we would expect, with the chance of throwing
each number having the same probability of 1/6. The use of the word “discrete” tells us that only
certain results are allowed, for example, we cannot consider the probability of throwing a value of
2.5 because it is clearly impossible given the system we are studying. The discrete nature of the
system is demonstrated in the distribution, with all values except the allowable results of 1, 2, 3,
4, 5 and 6 have a probability of zero.

Rolling a single die once is a simple case, what about if we roll two dice and add up their
values? There are 11 possible totals between 2 (rolling two ones) and 12 (rolling two sixes) and
the probability distribution is shown in Figure 3.2.
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Figure 3.2: The discrete probability distribution describing the probability, p, of obtaining a given
total, x, when 2 fair dice are thrown.

Let’s look at the kind of information the probability distribution for rolling two dice and
summing their values can provide us with. For example, we are most likely to throw a total of 7,
which has a probability of 0.167, whilst the chance of throwing a total of 2 is under 0.03 (in other
words less than 3%). We can also combine probabilities, for example, the probability of throwing
a total of 4 or less is just the probability of throwing a total of 4 plus the probability of throwing a
total of 3 plus the probability of throwing a total of 2 (0.083 + 0.056 + 0.028 = 0.167). The chance
of throwing a total of 5 or a total of 7 is the probability of throwing a total of 5 plus the probability
of throwing a total of 7 (0.111 + 0.167 = 0.278). Of course if we summed the probabilities of all
the different possible outcomes they would equal 1 because we know that for any given trial one
of the allowable outcomes has to occur.

3.2 Continuous probability distributions

As we have just seen, discrete probability distributions are appropriate when the outcome of a
certain trial, for example rolling a die, can only take certain values. In the case of continuous
probability distributions the result of the trial can take any value. The classic example of a contin-
uous probability distribution is the bell-shaped normal (sometimes called Gaussian) distribution.
Normal distributions are characterized by a mean (µ), which defines the position of their center,
and a standard deviation (σ) that controls their width. We find that in the real world many quan-
tities are normally distributed (hence the name), as an example we’ll look at intelligence quotient
(IQ). The way the results of modern IQ tests are structured is to yield a normal distribution with
a mean of 100 and a standard deviation of 15 (Figure 3.3).
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Figure 3.3: The normal continuous probability distribution describing IQ scores that have a mean
of 100 and a standard deviation of 15.

The first thing to notice is that the distribution is symmetrical about its center, which is
positioned on the mean value of 100. The width of the distribution is controlled by the standard
deviation, if we used a larger standard deviation the distribution would be wider and lower and if
we had used a smaller standard deviation it would be narrower and higher (Figure 3.4).
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µ = 100, σ = 15
µ = 100, σ = 20
µ = 120, σ = 10

Figure 3.4: Examples of normal distributions with different means (µ) and standard deviations
(σ).

There are some important differences in how we must interpret discrete and continuous dis-
tributions. For example, it is not as simple to answer the question “what it the probability of a
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candidate scoring 100 on a IQ test” as it may seem. If we used the same approach as we did for
discrete distributions we would simply read off the y-axis value at an IQ of 100 and quote that as a
probability. However, if we assume that the IQ score can take any value (i.e., there are an infinite
number of possible test scores), then the probability of obtaining a given score exactly is zero. We
can however make statements concerning probabilities if we consider ranges of values, for example,
what is the probability that a randomly selected candidate will score between 80 and 110 points.
By definition the integral of a continuous distribution is 1 and if we simply integrate the distri-
bution between 80 and 110 we will obtain the probability of a score in that interval (Figure 3.5).
This is the reason why continuous probability distributions are expressed in terms of probability
densities (see the y-axis of Figure 3.3) rather than straight probabilities as in the discrete case. If
we do this for the interval [80,110] we find the probability is ∼0.66.
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Figure 3.5: The probability of a random candidate obtaining an IQ score of between 80 and 110 can
be found by integration of the corresponding interval of the normal distribution (shaded region).

We can also determine the probability of scoring more or less than a given value. Marilyn vos
Savant (developer of the Monty Hall problem) has a quoted IQ of 228. This leads to an obvious
question; what proportion of people will have an IQ of 228 or higher. We use the same procedure
as above and simply integrate a normal distribution with a mean of 100 and a standard deviation
of 15 in the interval [228,∞], Figure 3.6.
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Figure 3.6: The probability of a random candidate obtaining an IQ score of 228 or higher can
be found by integration of the corresponding interval of the normal distribution (n.b. the shaded
region extends to +∞).

We can see that the probability densities associated with this part of the distribution are very
low and the number of people expected to have an IQ of 228 or higher corresponds to less than
1 person in every 1000 trillion. How can we interpret this result, does it mean that Marilyn vos
Savant is the cleverest person who will ever live or maybe we can take it as evidence that she lied
about her IQ? Well the answer is probably simpler. The normal distribution provides a model of
how the IQ scores are expected to be distributed, but it is certainly not a perfect model. We can
expect it to perform well in the region where we find the majority of the cases (the center), but as
we head out to the extremes of the distribution, called the tails, it will perform poorly. Therefore
we must take the probabilities associated with Marilyn vos Savant’s IQ with a pinch of salt.

To demonstrate this point concerning the tails of distribution, ask yourself what is the proba-
bility of someone having an IQ of 0 or less? Clearly it’s not possible to have a negative IQ, but if
we take a normal distribution with a mean of 100 and a SD of 15 and integrate the interval [−∞,0]
we find the probability according to the model is 1.3× 10−11, which admittedly is very low, but is
clearly not zero (Figure 3.7).
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Figure 3.7: The probability of a random candidate obtaining an IQ score of 0 or lower can be found
by integration of the corresponding interval of the normal distribution (n.b. the shaded region
extends to -∞).

3.2.0.1 Different forms of probability distribution

In the previous section we focused on the normal distribution because it is simple to understand
and many statistical methods assume that data are normally distributed. It is important to point
out, however, that a vast array of different distributions exist that represent a wide variety of
systems and processes (we’ll meet some of them later on). To give an example of a different
type of distribution the grain sizes of the particles in a sediment typically follow a log-normal
distribution. In a log-normal distribution the values, x, are not normally distributed, but instead
the values log(x) are normally distributed (Figure 3.8).
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Figure 3.8: An example of a log-normal distribution (left). The log-normal distribution becomes a
normal distribution when expressed in terms of logarithms (right)
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3.2.1 An example: the confidence interval on a mean

As mentioned above, probability distributions play a key role in allowing us to make inferences
concerning a population on the basis of the information contained in a sample. At this stage in the
course you’ll just need to accept the steps we’re about to take without worrying why they work,
the key point is to demonstrate how we can use probability distributions to make inferences.

Returning to our example of IQ scores, imagine that I don’t know what the average IQ of the
population is (remember it’s defined as a population mean µ = 100 with a population standard
deviation of σ = 15), so I’m going to estimate it using a statistical sample. I choose 10 people at
random and obtain their IQ scores to form my sample, X. The scores in the sample are as follows:

107.9, 106.8, 88.1, 100.8, 94.4, 99.0, 84.4, 110.9, 110.0, 85.7

Based on this sample I wish to estimate the mean of the population, µ. Of course it’s easy to
find the mean of the sample, X̄, simply by adding the values in X and dividing by the number of
values, n (10 in this case).

X̄ =

∑
X

n
(3.1)

For my sample X̄ = 98.8, which is close to, but not exactly the same as, the true value of 100. Of
course it’s not surprising that the mean of the sample is not exactly the same as the mean of the
population, it is after all just a sample. The key step is to use the information in the sample to
draw inferences concerning the mean of the population. Specifically we want to define a confidence
interval, so that we can make the statement:

µ = X̄ ± sampling error (3.2)

In this way we won’t be able to make a definite statement about the precise value of the population
mean, but instead we’ll be able to say with a specific probability that µ lies in a certain interval
(based on the sampling error).

To find the confidence interval let’s imagine that we repeated the above experiment an infinite
number of times, collecting a new sample of scores from 10 different people and calculating a new
value of X̄ each time. If the values in X come from a normal distribution (which we know they do)
the collection of infinity X̄ values would be normally distributed with a mean of µ and a standard
deviation of σ/

√
n, where n is still the size of each sample. This is a so-called sampling distribution

and it is shown in Figure 3.9.
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Figure 3.9: Distribution of sample means (X̄). The central 95% of the distribution provides the
basis for estimating a confidence interval for the population mean.

Of course I can’t take an infinite number of samples, but the sampling distribution provides
me with a model with which to estimate the population mean within a confidence interval.

Examination of the sampling distribution shows that 95% of the samples should yield values
of X̄ that lie within the interval µ± 1.96σ/

√
n. So there is a 95% chance that our original sample

with X̄ = 98.8 falls into this interval. This can be written more formally as:

Pr(µ− 1.96σ/
√
n < X̄ < µ+ 1.96σ/

√
n) = 95% (3.3)

With a bit of rearrangement the inequality can be written to solve for µ:

Pr(X̄ − 1.96σ/
√
n < µ < X̄ + 1.96σ/

√
n) = 95% (3.4)

therefore we can say with a 95% probability that µ lies in the interval X̄ ± 1.96σ/
√
n, but we still

have a problem, we don’t know σ. The standard deviation, s, of our sample, X, will provide an
estimate of the population standard deviation, σ. However, in the same way that X̄ was not exactly
equal to µ, we cannot expect s to be exactly equal to σ. This unreliability in s as an estimate
of σ means that we must widen the interval on µ slightly in order to retain 95% confidence. So
rather than using the value of 1.96 corresponding to the central 95% of the sampling distribution
in Figure 3.9, we have to look at the central 95% of a distribution called Student’s t-distribution
(Figure 3.10). We can now rewrite our inequality to include s rather than σ:

Pr(X̄ − 2.26s/
√
n < µ < X̄ + 2.26s/

√
n) = 95% (3.5)
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Figure 3.10: Student’s t-distribution allows the uncertainty in s as an estimator of σ to be included
in the determined confidence interval on the population mean, µ.

We now have all the information we need to estimate the 95% confidence interval on µ:

X̄ = 98.8 the mean of the sample

s = 10.20 the standard deviation of the sample

n = 10 the size of the sample

98.8− 2.26
10.2√

10
= 91.5 lower bound of the 95% confidence interval

98.8 + 2.26
10.2√

10
= 106.1 upper bound of the 95% confidence interval

So we can say with 95% confidence that µ lies in the interval [91.5,106.1]. In this way we used the
information in a sample to make inferences about a population using probability distributions as a
model to link the sample and the population. We’ll be using probability distributions in a similar
manner later on.
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By a small sample, we may judge of the whole piece.

Miguel de Cervantes from Don Quixote

4
Hypothesis testing

We’ll start by considering the very simple example of flipping a coin which can either land heads
or tails side up. If your coin is “fair”, in other words it is equally likely to land on heads or tails
when flipped, what is the probability that you will flip a tail? The answer is pretty obvious, if we
have two possibilities and they carry an equal probability then:

p =
1

2
(4.1)

So let’s try this for real, flip a coin 10 times and from your sample of results calculate the probability
that you will flip a tail (in other words count the number of times you flipped a tail and divide it
by the total number of flips, which is 10). We know that a fair coin should yield p = 0.5, so if you
didn’t flip 5 tails is it safe to assume that your coin is not fair? Of course it’s possible that your
coin gave a result close to 0.5, maybe 0.4 or 0.6, so what do you consider to the acceptable range
of p values from your experiment in which the coin can still be considered to be fair?

The primary problem with this question is that the answers we give are subjective. One person
may say the you must achieve p = 0.5 exactly, whilst a more relaxed person may consider anything
in the interval [0.3,0.7] to be okay. As scientists we want to avoid these kind of subjective choices
because they mean that two different people can make two different judgements based on the same
data sets. Statistics help us to interpret the data in an objective manner and thus remove the
effects of our personal beliefs (which as we saw in the Monty Hall problem can be very much in
error).

This problem is similar to the experimental design to test if the lady drinking tea at an garden
party in Cambridge can really tell the difference if you put the milk in the cup first. How many
cups of tea should she drink and what proportion should she get correct before you can conclude
that she can really can tell the difference in taste. Let’s go back to our coin flipping experiment.
Imagine we flip a coin 100 times and after each flip calculate the current probability of a tails by
dividing the number of tails obtained at that point by the current number of flips. I did this and
the results are shown in Figure 4.1.
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Figure 4.1: The results of flipping a coin 100 times. After each flip the probability of flipping a
tail is calculated based on the data so far. The dashed horizontal line shows p = 0.5, which is the
probability expected for a fair coin.

We can see from the results of our coin flips that the experimental probability gets close to
the expected value of p = 0.5, but even after 100 flips we’re not exactly at 0.5, so can the coin be
judged to be fair?

Clearly we can’t say that a coin is only fair if it gives p = 0.5 exactly. This would mean
that every time we repeat the 100 coin flips we would always need to get 50 heads and 50 tails.
Instead, we have to decide what is the acceptable range of p values in which the coin can still be
considered fair and what that range depends on (for example, the total number of flips included
in the experiment). To make these kind of decisions we will employ hypothesis testing.

4.1 Hypotheses and hypothesis testing

Lets start with a somewhat formal definition of a hypothesis, which is;

A tentative assumption made in order to draw out and test its logical or empirical consequences.

To test a hypothesis we need to state two hypotheses:

� Null Hypothesis (H0): the proposition.

� Alternative Hypothesis (H1): if H0 is doubtful, what does that imply.

Lets apply these definitions to the coin flipping experiment we examined above. If we want to
perform a hypothesis test to judge if our coin is fair we need to state the null and alternative
hypotheses:

� Null Hypothesis (H0): the coin is fair.
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� Alternative Hypothesis (H1): the coin is not fair.

A hypothesis test allows us to evaluate the possibility of H0 given the available experimental data.
If H0 does not appear to be very likely on the basis of the data, then we must reject H0 and
instead accept H1. For example if we flipped our coin 100 times and obtained 100 tails we would
feel pretty safe in rejecting the null hypothesis; the coin is fair, instead accepting the alternative
hypothesis; the coin is not fair.

How we could go about testing the null hypothesis for our coin flipping experiment? We want to
test if our coin is fair, so lets consider how a perfectly fair coin would behave. We actually studied
a similar problem in Section 3.1 when we were studying discrete probability distributions. If we
repeated the coin flipping experiment with a total of 10 flips a number of times we would obtain
a distribution of results that would describe the probability of any given result. For example, if
my coin is fair, what proportion of the experiments would yield 1 tail and 9 heads? Using the
binomial distribution we can find what the distribution of results would look like for our coin
tossing experiment if we repeated it an infinite number of times (i.e., a perfect representation of
the system). The binomial distribution representing the 10 flip experiment for a fair coin is shown
in Figure 4.2.
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Figure 4.2: The distribution of results for a fair coin flipped a total of 10 times. As expected most
trials give a result around the 5 tails region, thus this region of the distribution is associated with
high probabilities. We should also expect, however, to occasionally see extreme results with low
probabilities, for example 10 tails out of 10 (which carries a probability of approximately 0.001).

Now we’ll use the binomial distribution to look at the probabilities for an experiment including
100 flips and how many tails we can expect to get in any given trial (Figure 4.3).
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Figure 4.3: The distribution of results for a fair coin flipped a total of 100 times. As expected most
trials yield a result around the 50 tails region, thus this region of the distribution is associated with
high probabilities.

As before, extreme results have low probabilities, for example, we should only expect to observe
a trial that produces 100 tails out of 100 in about 1 in every 1030 trials. That means if you had
started flipping coins at the birth of the Universe and completed an 100 flip trial every 15 minutes
you probably still wouldn’t have got 100 tails out of 100 yet. This might seem like a stupid
statement to make, but what it shows us is that for a truly fair coin, results at the extremes (i.e.,
the extremes of the distribution) are very unlikely and results towards the center of the distribution
are much more likely. We can use this information to test the hypothesis that a given coin is fair.
If the result of our 100 flips experiment falls into a low probability region of the distribution we
know that the chance of getting such a result for a truly fair coin is low, which suggests that our
coin may not in fact be fair.

Let’s look at our binomial distribution for 100 flips of a fair coin again, with a specific focus on
the extremes (the tails) of the distribution. If we add up the probabilities of the results (as we did
in Section 3.1) we find there is only a 5% chance that an experiment will result in 59 or more tails
and a 5% chance that my experiment will result in 41 or less tails (Figure 4.4). This tells us that
for an experiment consisting of 100 flips of a fair coin we would expect to get between 42 and 58
tails in 90% of the cases. If our coin is unfair, however, we should get an unexpectedly low or high
number of tails, that doesn’t fit with the probabilities expected from the binomial distribution.
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Figure 4.4: The distribution of results for a fair coin flipped a total of 100 times. We can assess
how likely an extreme result is by adding up the probabilities in the tails of the distribution. In the
case of a fair coin flipped 100 times, 5% of the experiments should yield 641 tails and 5% of the
experiments should yield >59 tails. The remaining 90% of the experiments should give between 42
and 58 tails.

Remember that our null hypothesis (H0) is that the coin is fair, so at the start of the experiment
we are assuming the coin to be fair. If you now did 100 flips of the coin and only got 41 tails or
less, you could say that there is only a 5% chance that you would get 41 tails or less in a given
experiment, which would make you think that the coin may not be fair. The opposite case of
having too many tails also holds. If you got 59 tails or more you could say that there is only a
5% chance that you would get 59 tails or more in a given experiment, which again would make
you think that the coin may not be fair. To place this argument into a more robust framework we
need to introduce the concept of significance levels.

4.1.1 Significance levels

You can think of significance levels like a “trial by jury” court system, where a person is innocent
until proven guilty. In our specific case we consider a null hypothesis to be true until we have
sufficient evidence to reject it. Returning to our legal analogy, what is the probability of an
innocent person being found guilty of a crime they didn’t commit (i.e., the available evidence
leads to an incorrect guilty verdict)? If 1 person in 100 is wrongly found guilty, the significance
level of the system would be 0.01 (in other words a probability of 1%). Alternatively, maybe 1
person in 1000 is wrongly found guilty, the significance level of this system is 0.001 (a probability
of 0.1%).

Returning to our coins example, we found that for a experiment consisting of 100 flips of a fair
coin we would expect to get between 42 and 58 tails in 90% of the cases. Therefore if we perform
an experiment and get either 641 or >59 tails we could reject the null hypothesis (the coin is
fair) and accept the alternative hypothesis (the coin is not fair) at a significance level (α) of 0.1.
Here the α = 0.1 is telling us that there is a 10% chance that given the available data we have
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incorrectly accepted the alternative hypothesis when the null hypothesis was in fact true.
Maybe we really want to make sure that we don’t incorrectly reject the null hypothesis, so we

will work with a significance level of α = 0.01, which means that our experiment has to fall further
into the tails of the binomial distribution before we will reject the null hypothesis (Figure 4.5). For
100 coin flips, if the number of tails fell in the interval [37,62] we would accept the null hypothesis
with a significance level of 0.01. If, however, the number of tails was 636 or >63 we would see that
the probability of such a result for a fair coin is low (≤1%) and therefore reject the null hypothesis
and adopt the alternative hypothesis with a significance level of 0.01.
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Figure 4.5: The distribution of results for a fair coin flipped a total of 100 times. We can assess
how likely an extreme result is by adding up the probabilities in the extremes of the distribution.
In the case of a fair coin flipped 100 times, 0.5% of the experiments should yield 636 tails and
0.5% of the experiments should yield >63 tails. The remaining 99% of the experiments should give
between 37 and 62 tails per experiment.

4.1.1.1 Important points concerning significance levels

You can see through the use of significance levels that we can never be 100% certain of anything in
statistics. For example you may flip a fair coin 100 times and get 100 tails, the probability of you
doing so is incredibly low, but it is possible. With this in mind we can never say that a coin is truly
fair (or unfair) because an extreme result may just be a result of random chance. Therefore our
decisions concerning the acceptance/rejection of hypothesis must be made in conjunction with a
significance level that says what the probability is that we incorrectly rejected the null hypothesis.
With this in mind we need to consider two important points. First the value of the significance
level must be selected before the test is performed. This is to avoid abuse of tests, where it could be
decided in advance what result is wanted, e.g., the coin is not fair, and then a significance level is
chosen to ensure the test gives the desired result. Second, significance levels only tell us about the
probability that we have incorrectly rejected the null hypothesis. Significance levels don’t give any
information about alternative possibilities, for example, incorrectly accepting the null hypothesis.
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4.2 An example: Meltwater particles

We have taken two field trips, one to Greenland and one to Antarctica. On each trip we collected
1 litre of water at a number of locations and measured the concentration of microparticles. A total
of 16 locations were visited in Antarctica yielding the concentrations (in ppm):

3.7, 2.0, 1.3, 3.9, 0.2, 1.4, 4.2, 4.9, 0.6, 1.4, 4.4, 3.2, 1.7, 2.1, 4.2, 3.5

and 18 locations were visited in Greenland yielding the concentrations (again in ppm):

3.7, 7.8, 1.9, 2.0, 1.1, 1.3, 1.9, 3.7, 3.4, 1.6, 2.4, 1.3, 2.6, 3.7, 2.2, 1.8, 1.2, 0.8

To help understand the transport of meltwater particles we want to test if the variance in meltwater
particle concentrations is the same in Antarctica and Greenland (the variance is just the standard
deviation squared). The variance of the population is denoted by; σ2, however because we are
working with a sample we have to make an estimate of the population variance by calculating the
sample variance, s2:

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 (4.2)

where n is the size of the given data set (i.e., n=18 for Greenland and n=16 for Antarctica). Using
equation 4.2 we find that:

s2Antarctica = 2.2263

s2Greenland = 2.6471

and now we must use this information to draw inferences concerning σ2
Antarctica and σ2

Greenland. To
test if the meltwater variances at Antarctica and Greenland are the same, first we must state our
hypotheses:

� H0: The population variances are the same (σ2
Antarctica = σ2

Greenland)

� H1: The population variances are not the same (σ2
Antarctica 6= σ2

Greenland)

To compare the two variances we will perform a statistical test know as the F -test (named in
honour of Sir Ronald A. Fisher). The first step of the F -test is to compare the variance values by
taking their ratio. Of course if s2Antarctica and s2Greenland are identical their ratio will give a value of
1. The ratio of the microparticle data is:

s2Greenland

s2Antarctica

=
2.6471

2.2263
= 1.1890

But we still have a problem. Can we consider 1.1890 close enough to our ideal value of 1 that we
can accept H0 and conclude that σ2

Antarctica = σ2
Greenland or is 1.1890 sufficiently different to our

ideal value of 1 that we must reject H0 and accept H1, such that σ2
Antarctica 6= σ2

Greenland.
This is the same form of problem as we had in our coin flipping experiment. We therefore need

to be able to generate a probability distribution that represents the possible values of variance
ratios and we need to select a significance level against which the null hypothesis can be tested.

Earlier we discussed the need to make assumptions in order to draw statistical inference and
here we will make the assumption that the data from both Antarctica and Greenland come from
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normal distributions. Therefore we can take two normal distributions with the same variance and
sample 16 random numbers from the first (to represent the Antarctica sampling) and 18 random
numbers from the second (to represent the Greenland sampling), find their respective estimated
variances and then take the ratio. Because the distributions have the same variance we know that
their their values of σ2 are the same, however, because we are dealing with samples their values of
s2 will be slightly different each time we draw a set of random numbers and therefore the ratios
will form a distribution. The so-called F -distribution gives the distribution of ratios for an infinite
number of samples. We can control the sample sizes the F -distribution represents by adjusting its
degrees of freedom.

We calculated our ratio with s2Greenland as the numerator and s2Antarctica as the denominator.
Because the sample sizes for Greenland and Antarctica are 18 and 16, respectively, our F -test
will employ an F -distribution with {18-1,16-1} degrees of freedom. We can then compare the
ratio obtained from our Greenland and Antarctica samples to the distribution of ratios expected
from two normal distributions with the same variances. We’ll perform the F -test at the α =0.05
level, which means we need to check if our ratio for the Greenland and Antarctica samples is more
extreme than the 5% most extreme values of an F -distribution with {18-1,16-1} degrees of freedom.
Because our variance ratio could possibly take values less than 1 (if the numerator is less than the
denominator) or values greater than 1 (if the numerator is greater than the denominator) our 5%
of extreme values must consider the lowest 2.5% and the highest 2.5%, as shown in Figure 4.6.
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Figure 4.6: An F-distribution with {18-1,16-1} degrees of freedom. The extreme 5% of the F-
values are shown by the shaded regions. The F-value of the Greenland to Antarctica variance ratio
is shown as an open symbol.

We can see that our variance ratio for the Greenland and Antarctica samples does not fall into
the extremes, so at the α = 0.05 significance level we accept the null hypothesis that σ2

Antarctica =
σ2
Greenland.

Voila, we have now performed an F -test and shown the population variances of the meltwater
particle concentrations at Greenland and Antarctica are the same at the 0.05 significance level.
You could now take this information and build it into your understanding of how meltwater particle
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systems work. This is an important point, the F -test has given us some statistical information, but
the job of understanding what that information means in a geological sense is your responsibility.

4.2.1 Review of the F -test

Let’s quickly review how we performed the F -test because it forms a good template of how most
statistical tests are performed.

� Formulate the null (H0) and alternative (H1) hypotheses.

� Choose the significance level (α) at which the test will be performed.

� Calculate the test statistic (ratio of the variances in the case of the F -test).

� Compare the test statistic to a critical value or values (obtained from the extremes of the
F -distribution in the case of the F -test).

� Accept or reject H0.

Finally, it is important to consider if we made any assumptions during the statistical test. For
the F -test we assumed that the Antarctica and Greenland samples both came from a normal
distribution. If this is not a valid assumption then the results of the F -test will not be valid. Such
assumptions make the F -test a so-called parametric test, which just means that we assume that
the data come from a specific form of distribution.

4.3 Now it’s your turn: Mesozoic belemnites

Here’s your chance to try an F -test for yourself. We’ll work through all the steps that you need
in MATLAB and hopefully it will make you more comfortable with how MATLAB works. Belemnites
have been found in two Mesozoic horizons (A and B). The lengths of the fossil remains have been
measured and recorded (Figure 4.7).

Figure 4.7: Belemnite fossils (photo courtesy of the Natural History Museum, London).

We will now perform an F -test to determine if the variances of the lengths of the samples from
horizons A and B are the same at the 0.05 significance level. Our first step is to state the null
and alternative hypotheses:
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H0: The variances are the same (σ2
A = σ2

B)
H1: The variances are different (σ2

A 6= σ2
B)

Then we must calculate the F statistic:

F =
s2A
s2B

To perform the calculations we must first load the data into MATLAB. The data is stored in the file
Belemnites.mat and it includes two variables A and B.

Example code: 4

>> clear all % clean out the memory

>> load Belemnites % load the data file

>> whos % show the variables in the memory

Name Size Bytes Class Attributes

A 18x1 144 double

B 20x1 160 double

We now have the two variables in the memory. If we want to the look at the values they contain
we just give the variable name and hit the enter key. For example to look at the values in the
variable B:

Example code: 5

>> B

B = 5.1300

6.5900

6.0200

...

Note that MATLAB tells you which columns are being shown, for example, the 16th value of B

is 7.11. Using MATLAB we can perform a wide variety of mathematical procedures, which makes it
very useful when were need to calculate various statistical values.

To calculate the variances of A and B, we will use the function var, give the commands:

Example code: 6

>> A_var=var(A) % calculate the variance of A and store it in A_var

>> B_var=var(B) % calculate the variance of B and store it in B_var

We’ve created two new variables A var and B var, which contain the variances of A and B, re-
spectively. In turn we can use these values to calculate the F -statistic.
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Example code: 7

>> F=A_var/B_var

F = 0.3375

So the ratio of the sample variances is 0.338 and now we need to compare this value to a F -
distribution to see if it lies in the most extreme 5%. This is what we call a two-sided test, so
as before we need to consider the lowest 2.5% and highest 2.5% of the F -distribution. Therefore
we’re accounting for the possibility that the ratio is significantly less than 1 or significantly greater
than 1 (just like in our example with the microparticle concentrations). To find the values of F for
the extremes we first need to find the number of degrees of freedom for the distribution. We can
do this using the length function, which tells us how many entries there are in a given variable.
Once we know the degrees of freedom we can find the value at which the F -distribution reaches
a given probability using the function finv. The finv function has 3 inputs; the probability we
are interested in, the number of degrees of freedom of the numerator and the number of degrees
of freedom of the denominator.

Example code: 8

>> nA=length(A) % number of entries in A

>> nB=length(B) % number of entries in B

>> F_crit1=finv(0.025,nA-1,nB-1) % find the lower critical value

>> F_crit2=finv(1-0.025,nA-1,nB-1) % find the upper critical value

We’ve now calculated all the values that we need and we can display them together to finish
off the test.

Example code: 9

>> F %value of the test statistic

F = 0.3375

>> F_crit1 %lower critical value of the F-distribution

F_crit1 = 0.3798

>> F_crit2 %upper critical value of the F-distribution

F_crit2 = 2.5670

We can see that our F -value from the belemnite data is less than the lower critical value of the
F -distribution (Figure 4.8). This means it is an extreme result and at the α = 0.05 significance
level we must reject the null hypothesis and accept the alternative hypothesis that the population
variances of the lengths of A and B are different.
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Figure 4.8: An F-distribution with {17,19} degrees of freedom. The extreme 5% of the F-values
are shown by the shaded regions. The F-value of the belemnite variance ratio is shown as an open
symbol.

4.4 Other hypothesis tests

There is a vast number of different hypothesis tests with which to investigate many aspects of
different data sets. Nearly all hypothesis tests work in the same way, following the sequence:

� Formulate the null (H0) and alternative (H1) hypotheses.

� Choose the significance level (α) at which the test will be performed.

� Calculate the test statistic(s).

� Compare the test statistic to a critical value or values (obtained from a suitable distribution).

� Accept or reject H0.

So if there is some property you need to test in order to make inferences about the geological
system you are studying you can usually find a test that will do it for you. We’ll look at one final
example to again demonstrate the general nature of hypothesis testing.

4.4.1 Meltwater particles revisited

We’re going to use the same meltwater particle data set as we analyzed earlier, but this time rather
than using an F -test to find if the variances of the Antarctica and Greenland samples are the same
we’ll study the population means instead. Specifically, we’ll employ Student’s t-test to determine
if the means of the Antarctica and Greenland samples are the same or not. The t-test does have
assumptions and it’s important that we pay attention to them:

� The populations have the same variance.
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� The samples come from normal distributions.

You can see that the assumption of normal distributions is the same as for the F -test, but now
we have the added assumption that the Antarctica and Greenland samples have the same vari-
ance. Fortunately, in our earlier analysis we established using an F -test that the Antarctica and
Greenland samples have the same variance so we know that our data meet this assumption.

If we want to test if the two means are the same, first we must state our hypotheses:

H0: The means are the same (µAntarctica = µGreenland)
H1: The means are different (µAntarctica 6= µGreenland)

and we’ll work with a significance level of α = 0.05. The t-statistic is a little more complicated
to calculate than the F -statistic, but it is still just an equation that we plug known values into.
Specifically:

t =
X̄1 − X̄2

S
√

1
n1

+ 1
n2

S =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(4.3)

where n1, n2 are the number of values from Antarctica (16) and Greenland (18), X̄1, X̄2, are the
mean sample values from Antarctica and Greenland and s21, s

2
2 are the sample variances from

Antarctica and Greenland. We can calculate the test-statistic in MATLAB, using the variables A

(Antarctica) and G (Greenland) stored in the file microparticles.mat. As you type in commands
into MATLAB, check that you can see how they marry up with the terms in equation 4.3. Also
notice that we can reuse variables names such as top and bottom once we are finished with them
(MATLAB simply overwrites the existing values).

Example code: 10

>> clear all % clear the memory

>> load microparticles % load the data file containing A and G

>> n1=length(A) % define the number of values in A

>> n2=length(G) % define the number of values in G

>> top=(n1-1)*var(A)+(n2-1)*var(G) %calculate the numerator of S

>> bottom=n1+n2-2 % calculate the denominator of S

>> S=sqrt(top/bottom) %find the pooled sample variance

>> top=mean(A)-mean(G) %calculate the numerator of the test statistic

>> bottom=S*sqrt(1/n1+1/n2) %calculate the denominator of the test statistic

>> t=top/bottom %calculate the test statistic

>> t %display the final t value

t = 0.3758

We’ll compare our test statistic to critical values drawn from a t-distribution. The formulation
of the t-distribution follows a similar concept to that of the F -distribution. We take two normal
distributions with the same variances and means, draw a random sample from each of them and
then calculate the corresponding value of t. If we did this infinitely many times we would pro-
duce a t-distribution. To find our critical values we need to work with a t-distribution that has
n1 − 1 + n2 − 1 degrees of freedom and because this is a two-sided test (i.e., the means can be
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different in two ways, either µAntarctica > µGreenland or µAntarctica < µGreenland) we need to look at
the lower and upper 2.5% extremes. Once we know the degrees of freedom we can find the value at
which the t-distribution reaches a given probability using the function tinv, which has two inputs;
the probability we are interested in and the total number of degrees of freedom.

Example code: 11

>> alpha=0.05 %set the significance level

>> t_crit1=tinv(1-alpha/2,n1-1+n2-1) %calculate the upper critical value

>> t_crit2=tinv(alpha/2,n1-1+n2-1) %calculate the lower critical value

We can now look at all the values together:

Example code: 12

>> t %display the final t value

t = 0.3758

>> t_crit1 %display the upper critical t value

t_crit1 = 2.0369

>> t_crit2 %display the lower critical t value

t_crit2 = -2.0369

The first thing to notice is that the t-distribution is symmetrical about 0 (Figure 4.9) therefore the
upper and lower critical values have the same magnitude but different signs. We can see that the
t-value for the microparticle data lies between the critical values rather than in the extremes of the
distribution. Therefore we can accept the null hypothesis and state that µAntarctica = µGreenland at
the 0.05 significance level.
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Figure 4.9: A t-distribution with 32 degrees of freedom. The extreme 5% of the t-values are shown
by the shaded regions. The t-value of the microparticle data is shown as an open symbol.
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The invalid assumption that correlation implies cause is probably
among the two or three most serious and common errors of human
reasoning.

Stephen Jay Gould

5
Correlation and regression

The focus of this chapter is correlation and regression, which are two closely related techniques.
You may find that the terms are used somewhat interchangeably in the literature, so a good stating
place is to provide clear definitions of what the two techniques actually are.

Linear correlation: to what degree are variables related linearly.
Linear regression: how are variables related linearly.

I’m sure that you are familiar with correlation and regression from packages like EXCEL that
include them as part of their trendlines options. We’re going to look at both correlation and
regression in more detail and examine what important information they can and cannot provide
you with.

5.1 Correlation

As mentioned above, correlation tells us the degree to which variables (2 or more) are related
linearly. Correlation usually expresses the degree of the relationship with a single value. By far
the most common value used in correlation analysis is the Pearson product-moment correlation
coefficient (PPMCC) and it will be our focus in this section. You’ve all probably used a variant
of the PPMCC before in the “R-squared” value EXCEL allows you to add to trendlines in scatter
plots. In which case, you should be familiar with at least a qualitative interpretation of the PPMCC
which is simply the value “R” that is used to calculate “R-squared”. We will use a lowercase r
rather than R. In EXCEL, r is only a few mouse clicks away, but to understand what information
it can give us we need to look at how it is calculated (sorry, but it’s unavoidable) and how we can
draw inferences from it.
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5.1.1 Sample correlation

If we have a data set consisting of two variables, let’s say; X and Y , first we look at how far each
value is away from its corresponding mean. We’ll call these differences deviations and represent
them with lowercase letters:

x = X − X̄, (5.1)

y = Y − Ȳ . (5.2)

Once we’ve found the deviations, r is given by the formula:

r =

∑
xy√∑

x2
√∑

y2
. (5.3)

Remember that the
∑

simply means sum all the values together. We’ll apply the correlation
analysis to some real data to gain an appreciation of how equation 5.3 works and what it is telling
us.

The data set stored in gravels.mat contains two variables from a study of how the size of
gravel on a river bed varies as we move downstream. The variable size contains the size of the
gravels in φ units, where larger values indicate small sizes (for example a piece of gravel with
φ = -6 is larger than a piece of gravel with φ = -5). Don’t worry if you’re not familiar with the
φ system, it’s not so important, but we can justify its use straight way. In natural systems we
tend to find that grain sizes are log-normally distributed (we discussed this in Section 3.2.0.1), but
one of the assumptions of the correlation analysis is that the data are (at least approximately)
normally distributed. The φ grain size scale is defined as:

φ = − log2D/D0, (5.4)

where D is the diameter of the particle and D0 is a reference diameter equal to 1 mm. So if
the data are log-normally distributed, the φ scale transforms them into a normal distribution and
the assumptions of the correlation analysis are met. The second variable in the data set is the
downstream distance, dist, which has units of kilometers. In this case a value of, for example,
dist = 10 corresponds to a piece of gravel being collected 10 km downstream with respect to the
starting location of the experiment.

The first thing we’ll do is plot the data to take a look at it. We can do this in MATLAB using
the commands.

Example code: 13

>> clear all %clear the memory

>> load gravels %load the data file

>> plot(dist,size,'ok') %plot the data points with black symbols

>> xlabel('Distance [km]') %label the x-axis

>> ylabel('Gravel size [phi]') %label the y-axis
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Figure 5.1: Plot of how gravel size varies downstream in a river.

Just by looking at the plot we can see that there may be a linear relationship between gravel
size and distance, but we’ll need to calculate the PPMCC to quantify the degree of the relation-
ship. As we saw in equations 5.1 and 5.2, the first step to calculating r is to find the deviations
of the variables. The structure of the deviations is the key to understanding equation 5.3, so we’ll
now plot them in a new figure and consider them in a general way in the next section.

Example code: 14

>> figure %create a new figure

>> x=dist-mean(dist) %calculate the deviations in the distance

>> y=size-mean(size) %calculate the deviations in the gravel size

>> plot(x,y,'ok') %plot the deviations
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Figure 5.2: Deviations of the gravel data set. Notice how the sign of xy will depend on the quadrant
of the plot where the deviations lie.

Looking back at equation 5.3 we can see that the top of the equation involves multiplying
the two sets of deviations together. This multiplication gives us a measure of how well the two
variables are moving together. If the deviations of a given observation have the same sign (i.e.,
the point representing the deviations lies in the first or third quadrant) the product xy will be
positive. Alternatively, if the deviations of a given observation have different signs (i.e., the point
representing the deviations lies in the second or fourth quadrant) the product xy will be negative.
If values in X and Y exhibit a positive relationship, i.e., as X increases Y also increases, then
most of our deviations will define points that lie in the first or third quadrants and when we form
the sum

∑
xy, we’ll get a positive number. In the opposite case of a negative relationship, i.e., as

one variable increases the other decreases, most of the deviations will define points in the second
or fourth quadrant. In such cases

∑
xy will be negative. The last case to consider is when no

relationship exists between X and Y . In this situation the points defined by x and y will be spread
amongst all four quadrants and the signs of xy will cancel to give a value of

∑
xy close to zero.

We can see that the sign of
∑
xy tells us about the sense of the correlation, i.e., is it positive

or negative, but there are problems with the magnitude of the value. Clearly, each value of xy will
depend on the units of the data. In the example of our river gravels, if the down stream distance
was in millimeters rather than kilometers each value of xy would be 106 times larger because
106 mm = 1 km. To compensate for the problem we take the magnitudes of the x and y values
into account in the denominator of equation 5.3 and this makes the PPMCC “scale invariant”.
We’ve calculated and plotted the deviations of the gravel data already and now it is a simple task
to calculate the PPMCC using MATLAB.
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Example code: 15

>> top=sum(x.*y) %calculate top of the equation

>> bottom=sqrt(sum(x.^2))*sqrt(sum(y.^2)) %calculate bottom of the equation

>> r=top/bottom %calculate the PPMCC

r = 0.9571

Of course, calculation of the PPMCC is a common task in statistics and MATLAB can do the
whole process with a call to the function corr. Calculate the PPMCC for the gravel data again
using corr:

Example code: 16

>> r=corr(dist,size) %use the built-in function to find PPMCC

You should obtain a PPMCC value of ∼0.96 for the gravel data.
The value of r can range between -1 (a perfect negative correlation) and 1 (a perfect positive

correlation). It’s important to now repeat our definition from above that correlation measures the
degree to which variables are related linearly. Therefore a value of r close to zero does not mean
that there is no relationship between x and y, but that there is no linear relationship between
them. This is demonstrated in Figure 5.3, which shows a variety of different relationships and
their corresponding PPMCC. Some of the cases show a clear relationship between x and y, but
because it is not a straight-line relationship the corresponding value of r is close to 0.

Figure 5.3: Examples of the PPMCC value for different data distributions. Notice that some cases
yield r = 0 even though there is a clear relationship between x and y. This is because the PPMCC
only measures the extent of the linear relationship.

5.1.2 The coefficient of determination, r2

The coefficient of determination, r2, is simply the square of the value given by equation 5.3 (yes it
is that easy). We’re not going to dwell on r2 except to look what advantages and disadvantages
it has over using r. First the slight disadvantage, because r2 must always be a positive number,
we lose information about the sign of the relationship (is it positive or negative). The advantage
of r2 is that it tells us what proportion of the total variation in Y is accounted for in the linear
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relationship with X. Taking our gravel data as an example, we found r = 0.96 and thus r2 = 0.92.
Therefore 92% of the variation in the gravel sizes is accounted for by their position downstream,
whilst 100(1− r2)% of their variation is not accounted for by their position downstream.

5.1.3 Population correlation

In the previous section we calculated the PPMCC for a sample of gravels from a river. This tells
us about the linear correlation in our sample and if we returned to the river and collected a new
set of gravels we would expect to get a slightly different value of r to the one we got above. Clearly
the aim of such an analysis is to make inferences about the population (all the gravels in the river)
on the basis of the sample (the gravels we collected). Here the maths and statistical reasoning
becomes a little involved so we’re not going to worry about why the method works (look at the
recommended reading list if you want more details), but instead focus on the application of the
method.

To begin, the value of r we calculated for the sample provides an estimate of the population
correlation coefficient, ρ. However, because this is an estimate we need to consider what extra
information we can obtain for ρ. First we’ll perform a hypothesis test to test the significance of ρ
and then we’ll calculate the confidence interval on ρ.

5.1.4 Test for significance of a correlation coefficient

The aim of this test is to find if ρ is significantly different from 0. This is particularly useful
because if ρ is significantly different from 0 it implies there is a significant correlation between X
and Y . The hypotheses for the test are:

� Null hypothesis (H0): ρ = 0

� Alternative hypothesis (H1): ρ 6= 0

To calculate the test statistic we use the value of r calculated above and n, the number of data
points in the sample. The test statistic, t, is given by:

t = r

√
n− 2

1− r2
(5.5)

The test statistic can then be compared to a critical value drawn from a Student’s t-distribution
with n− 2 degrees of freedom. If the calculated value of t exceeds the critical t then we can reject
the null hypothesis and conclude that a significant correlation exists between X and Y at the
chosen significance level, α. Lets try out this test on our river gravels using MATLAB.

Example code: 17

>> n=length(dist) %number of observations in the analysis

>> t=r*sqrt((n-2)/(1-r^2)) %test statistic t value

>> alpha=0.05 %set the significance level for the test

>> tcrit=tinv(1-alpha/2,n-2) %find the 2-sided critical value

We find that the test statistic (15.14) is indeed larger than the critical value (2.08) so we re-
ject the null hypothesis and accept the alternative hypothesis. Therefore a significant correlation
exists between gravel size and downstream distance at the α = 0.05 significance level.
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5.1.5 Confidence interval for the population correlation

If we can show that ρ is significantly different from 0 at some desired significance level then we can
also calculate the confidence interval on ρ. The confidence interval will tell us the range in which
the true value of ρ should lie with a given probability. The first step is to take our calculated value
of r and apply Fisher’s z transform:

zr =
1

2
ln

(
1 + r

1− r

)
. (5.6)

The standard error of zr is approximately:

SE =
1√
n− 3

, (5.7)

where n is the sample size. Because zr is normally distributed we can find confidence intervals for
zr from a normal distribution just like in Section 3.2.1. For example, the 95% confidence interval
on zr would be [zr− (1.96 ∗SE), zr + (1.96 ∗SE)]. We now have the confidence interval for zr and
to find what this corresponds to in terms of correlation coefficients we need to apply the inverse z
transform (i.e., convert from zr values back to r values):

r =
e2z − 1

e2z + 1
(5.8)

We’ll now calculate the confidence interval on ρ for our river gravels using MATLAB.

Example code: 18

>> zr=0.5*log((1+r)/(1-r)) %perform the Fisher z transform

>> SE=1/sqrt(n-3) %estimate the standard error

>> C=0.95 %set the confidence level as 95%

>> nC=-norminv((1-C)/2) % value from a normal distribution

>> z_low=zr-(nC*SE) %lower value of the zr confidence interval

>> z_up=zr+(nC*SE) %upper value of the zr confidence interval

>> r_low=(exp(2*z_low)-1)/(exp(2*z_low)+1) %inverse z transform

r_low = 0.8999

>> r_up=(exp(2*z_up)-1)/(exp(2*z_up)+1) %inverse z transform

r_up = 0.9819

Given the 95% confidence interval of ρ is [0.90,0.98] you can see that it is not particulary meaning-
ful when people quote r values to a large number of decimal places. As with most of these common
statistical tasks, MATLAB can perform the calculation automatically using the function corrcoef.

Example code: 19

>> [R,P,r_low,r_up]=corrcoef(dist,size);

>> r_low

r_low = 1.0000 0.8999

0.8999 1.0000

>> r_up

r_up = 1.0000 0.9819

0.9819 1.0000
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5.1.6 The influence of outliers on correlation

An outlier is a data point that deviates markedly from other members of the sample in which
it occurs. An outlier could be from an extreme end of a distribution, for example Marilyn vos
Savant’s IQ of 228, or simply the product of a large measurement error. The important point is that
outliers can have a dramatic effect on the calculated PPMCC because they allow a large amount
of the data variability to be described by a single point (because the product of their deviations
is very large in relative terms). Shown in Figure 5.4 is a small data set with a correlation that
is effectively zero (r2 = 0.03). When an outlier is included in the same data set the correlation
becomes highly significant (r2 = 0.81) because most of the variability in the data is controlled by
the single outlier.
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Figure 5.4: The correlation in a data set can be strongly influenced by the presence of outliers.
The panel on the left shows a data set which exhibits no correlation. However, when an outlier is
added to the data the correlation increases dramatically.

It is therefore important that you check your data in advance for outliers and consider removing
them from the analysis.

5.1.7 Spurious correlations

It’s important to consider what a significant correlation between two variables really tells us.
For example, observations through the 19th Century show that a strong correlation existed in
the USA between the number of priests and the number of alcoholics. How should we interpret
such a relationship? Does it tell us that most priests are alcoholics, or possibly attending church
drives people to alcoholism? We can think of a number of possible scenarios that link priests
and alcoholics, but the truth is much simpler. As the population of the USA increased in size
through the 19th Century, so of course the number of both priests and alcoholics also increased.
In this way population size is a confounding variable that renders any kind of cause and effect
relationship between priests and alcoholics spurious. Therefore, it is accurate to say that the
correlation between the number of priests and alcoholics is statistically significant, but any naive
inference concerning cause and effect is clearly meaningless.
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5.2 Linear regression

In the previous section we assessed the degree to which two variables are related linearly using
correlation. The aim of regression is to quantify how the variables are related linearly. To put
this in simpler terms, how do we find the straight-line that will give the best description of the
sample data. Again this is a task that is performed commonly in EXCEL, but we need to look
at the process in more detail. Firstly, you should all be familiar with the equation for a straight-line:

Y = a+ bX, (5.9)

where a is the intercept (the value of Y when X = 0) and b is the gradient. Let’s again consider
our river gravels. With distance as the X value and grain size as the Y value we fit a straight line
to the data to obtain a and b for our studied sample. Of course what really interests us is making
inferences from the sample to estimate the relationship for the population. Thus whilst we can
calculate a and b, what we really want is confidence intervals for α and β. It’s also important to
note that there are assumptions associated with linear regression, we’ll state them now and then
look at them in more detail later:

� Requires an independent (X) and dependent (Y ) variable.

� The errors associated to X should be orders of magnitude less than those on Y .

� Both X and Y should be normally distributed.

5.2.1 Calculating a and b for a sample

Equation 5.9 describes a straight-line, but it is very unlikely that our data will fall perfectly onto
a straight-line (from our plots above we know the river gravel data certainly don’t). Therefore if
we are going to properly relate X and Y we need to include an collection of errors, E, that tell us
what the difference is between the data and the line:

Y = a+ bX + E, (5.10)

This idea is shown graphically in Figure 5.5.
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Ei

Figure 5.5: The error Ei for point i based on the difference between the data point Yi and its
corresponding point on the line Ŷi (more on this later).

A line that fits the data closely will produce small errors, whilst a poorly fitting line will produce
large errors. Therefore if we can get the collection of errors in E as small as possible we will know
that we’ve found the best fitting line. We can do this by finding the line that produces the smallest
possible value of

∑
E2. Another property of E that we can use to help us is that for the best

fitting line
∑
E = 0. It makes intuitive sense that for the best fitting line all the errors will cancel

each other out. To make the errors in E as small as possible (i.e., minimize
∑
E2) and ensure that∑

E = 0 we use the approach of least-squares (which is the technique Gauss developed when he
was 18 years old and subsequently used to make his predictions about the orbit of Ceres).

To calculate b, we’ll again use deviations in X and Y (equations 5.1 and 5.2):

b =

∑
xy∑
x2
. (5.11)

We also know that the best fit line must pass through the point (X̄, Ȳ ), i.e., the mean of the data,
so once b is found we can calculate a:

a = Ȳ − bX̄. (5.12)

We now know the equation for the best-fit line, which provides us with a linear model relating X
and Y . We can therefore use the line to make predictions about Y given a value or values of X.
If we were interested in the value of Y at a value of X denoted by X0, the prediction of Y is given
by:

Ŷ0 = a+ bX0, (5.13)
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note the Ŷ notation that denotes we are making a prediction of Y . Let’s try this out in MATLAB,
again using the downstream gravel data and the deviations we calculated earlier. We’ll make pre-
dictions for the original X values in order to draw the regression line in the plot (Figure 5.6).

Example code: 20

>> b = sum(x.*y)/sum(x.^2) %use the deviations to find the slope

>> a = mean(size)-b.*mean(dist) %use the original data to find the intercept

>> Yhat = a+b.*dist %predicted gravel size for the distance values

>> figure %make a new figure window

>> plot(dist,size,'ok') %plot the data

>> xlabel('Distance [km]') %label the x-axis

>> ylabel('Gravel size [phi]') %label the y-axis

>> hold on %allows extra items to be added to the plot

>> plot(dist,Yhat,'-k') %plot the regression line
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Figure 5.6: Regression line showing the linear relationship relating gravel size to distance down-
stream.

5.2.2 The influence of outliers on regression

As we saw earlier, outliers can have a dramatic effect on the correlation of two variables and the
same problem exists in regression. An outlier can be so far away from the real data trend that it
pulls the regression line towards it, yielding a spurious relationship (Figure 5.7).
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Figure 5.7: Regression can be strongly influenced by the presence of outliers. The panel on the left
shows the regression for a data set with no outliers. However, when an outlier is added to the data
(right) the regression line is pulled towards it, changing the regression dramatically.

Therefore, as with correlations, it is essential that you check your data set in advance for
outliers and consider removing them from the analysis.

5.2.3 Confidence interval for the slope

Now that we’ve found b for our sample it’s important to draw inferences concerning the population,
specifically the slope β. The first step is to examine the residuals, which are simply the difference
between the values of Y measured for the sample and the corresponding predicted values Ŷ obtained
from the regression equation. What we need to know first is the estimated variance of the residuals,
s2, given by:

s2 =
1

n− 2

∑
(Y − Ŷ )2 (5.14)

From the estimated variance it is then simple to calculate a confidence interval for the slope β
again using a Student’s t-distribution with n − 2 degrees of freedom. For example, if we wanted
to find the 95% confidence interval, we would use

β = b± t0.025
s√∑
x2

(5.15)

The 0.025 value is used because the confidence interval is a two-sided statistic and (100−95)/100/2 =
0.025. As with the other confidence intervals we studied earlier, the interval here has a 95% chance
of containing the true value of β. Let’s carry on with our gravels example and calculate the 95%
confidence interval for the slope in MATLAB.

Example code: 21

>> Yhat = a+b*dist %predicted gravel size for the distance values

>> s2 = 1/(n-2)*sum((size-Yhat).^2) %estimated variance of residuals

>> s = sqrt(s2) %estimated standard deviation of the residuals

>> t=-tinv(0.025,n-2) %obtain the t distribution value with dof = n-2

>> beta_low=b-t*s/sqrt(sum(x.^2)) %lower value of 95% CI

beta_low = 0.1753

>> beta_up=b+t*s/sqrt(sum(x.^2)) %upper value of 95% CI

beta_up= 0.2312
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So we can say that on the basis of our sample gradient, b = 0.203 φ km−1, there is a 95%
probability that the true population gradient lies in the interval [0.175, 0.231] φ km−1.

5.2.4 Confidence interval for the intercept

Not surprisingly, the calculation of a confidence interval for the population intercept, α, is similar to
the approach taken for the slope in the previous section. Therefore we won’t dwell on it too much,
the key pieces of information we need are the intercept estimated from the sample (a obtained from
equation 5.12), the estimated variance of the residuals (s2 obtained by equation 5.14), the mean
of X (X̄), the deviations of X (x obtained from equation 5.1) and the number of observations
included in the sample (n). The 95% confidence interval for α is then given by:

α = a± t0.025s

√
1

n
+

X̄2∑
x2

(5.16)

Let’s go back to our gravels example and see how we would calculate the confidence interval for α
in MATLAB.

Example code: 22

>> Yhat = a+b*dist %predicted gravel size for the distance values

>> s2 = 1/(n-2)*sum((size-Yhat).^2) %estimated variance of residuals

>> s = sqrt(s2) %estimated standard deviation of the residuals

>> t=-tinv(0.025,n-2) %obtain the t distribution value with dof=n-2

>> alpha_low=a-t*s*sqrt(1/n+mean(dist.^2)/sum(x.^2)) %lower value of 95% CI

>> alpha_low = -10.9925

>> alpha_up=a+t*s*sqrt(1/n+mean(dist.^2)/sum(x.^2)) %upper value of 95% CI

>> alpha_up = -10.6221

So we can say that on the basis of our sample intercept, a = -10.81 φ, there is a 95% proba-
bility that the true population intercept lies in the interval [-10.99, -10.62] φ.

5.2.5 Making predictions from a regression model

With equation 5.13 we saw how easy it is make predictions of Y given some value of X once a and
b have been found. You won’t be surprised to hear that things are not quite that simple. We have
to think about what we are predicting and of course include some form of confidence interval in our
predications given that our regression is based on a sample that is scattered around the regression
line. Here our gravels data set provides an illustrative example of the different predications we can
make.

5.2.5.1 Predicting a mean

In the sections above we found that a = -10.807 and b = 0.203, so for example, at distance 5 km
downstream we can make a predication of the the gravel size:

a+ bX0 = Ŷ0,

−10.807 + 0.203 ∗ 5 = −9.792

71



Okay, so we’ve predicted a value of -9.8 φ but what does this value correspond to? It is a prediction
of the mean of Y at X0. So in the case of our example data set the estimated mean gravel size
at a downstream distance of 5 km is -9.8 φ. The focus of the previous sections was the calculation
of confidence intervals on the slope and intercept and in a similar manner we need to include a
confidence interval on the estimated mean because of the uncertainty associated with working with
a sample rather than the whole population and the misfit between the data and the regression
model. Again we’ll use the estimated variance of the residuals, s2 (equation 5.14). The 95%
confidence interval for the mean of Y0 at the position X0 is given by:

µ0 = (a+ bX0)± t0.025s

√
1

n
+

(X0 − X̄)2∑
x2

(5.17)

where t again represents Student’s t-distribution with n− 2 degrees of freedom. Let’s perform this
calculation in MATLAB for the gravel data at a position X0 = 5 km (Figure 5.8).

Example code: 23

>> Yhat = a+b*dist %predicted gravel size for the distance values

>> s2 = 1/(n-2)*sum((size-Yhat).^2) %estimated variance of residuals

>> s = sqrt(s2) %estimated standard deviation of the residuals

>> t=-tinv(0.025,n-2) %obtain the t distribution value with dof=n-2

>> X0=5 %make predictions for a distance of 5 km downstream

>> C=t*s*sqrt(1/n+(X0-mean(dist))^2/sum(x.^2)) %half-width of the CI

>> mu0=a+b*X0 %prediction of mean at X0

mu0 = -9.7911

>> mu0_low=mu0-C %lower value of the 95% CI

mu0_low = -9.8685

>> mu0_up=mu0+C %upper value of the 95% CI

mu0_up = -9.7136

>> figure %make a new figure

>> plot(dist,size,'ok') %plot the data points

>> xlabel('Distance [km]') %label the x-axis

>> ylabel('Gravel size [phi]') %label the y-axis

>> hold on %add items to the plot

>> plot(dist,Yhat,'k') %plot the regression line

>> plot([X0,X0],[mu0_low,mu0_up]) %plot the CI for the predicted mean
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Figure 5.8: Regression line showing the linear relationship relating gravel size to distance down-
stream. The vertical line shows the 95% confidence interval for the mean gravel size at a distance
of 5 km downstream (calculated using equation 5.17).

In the above example we considered a single value of X0, however, if we consider a collection of
values spanning the interval between the minimum and maximum of X we can draw a band around
the regression line that shows how the confidence interval on the mean changes as a function of
distance downstream (Figure 5.9). Let’s do this in MATLAB.

Example code: 24

>> X0=[min(dist):0.1:max(dist)] %sequence of distances at a 0.1 km spacing

>> C=t*s*sqrt(1/n+(X0-mean(dist)).^2/sum(x.^2)) %half-width of the CI

>> mu0=a+b*X0 %prediction of means at various X0

>> mu0_low=mu0-C %lower values of the 95% CI

>> mu0_up=mu0+C %upper values of the 95% CI

>> figure %make a new figure

>> plot(dist,size,'ok') %plot the data points

>> xlabel('Distance [km]') %label the x-axis

>> ylabel('Gravel size [phi]') %label the y-axis

>> hold on %add items to the plot

>> plot(dist,Yhat,'k') %plot the regression line

>> plot(X0,mu0_low,'--k') %plot the lower CI for the predicted means (dashed)

>> plot(X0,mu0_up,'--k') %plot the upper CI for the predicted means (dashed)
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Figure 5.9: Regression line showing the linear relationship relating gravel size to distance down-
stream. The dashed lines shows the band of 95% confidence intervals for the mean gravel size
downstream, calculated using equation 5.17 and a collection of X0 values.

Let’s think about the band defined by the confidence intervals in more detail. First, we can see
that the band gets wider towards the edges of the data (i.e., low values of X and high values of X).
This is because as we move away from the center of the data our predictions of the mean contain
larger uncertainties. This level of uncertainty is controlled by the term (X0−X̄)2 in equation 5.17,
which we can see will yield larger values (and thus wider confidence intervals) the more removed
X0 is from X. The second point to note is what would happen to the width of the confidence
intervals as we increased the size of the sample, n. If we imagine that we had an infinitely large
sample, i.e., the whole population, we can see that equation 5.17 would become:

µ0 = (a+ bX0)± t0.025s
√

0 (5.18)

so the uncertainty disappears and we can make a perfect prediction of µ0. Although the lab work
associated with measuring the size of infinity pieces of gravel may be a challenge this demonstrates
that as n gets larger the size of the confidence interval will decrease. This shouldn’t be too
surprising to you because clearly the larger the sample size the better it will approximate the
natural system. Of course we can also use equation 5.17 in an alternative manner if we need to
make predictions of the mean grain size with a certain level of uncertainty. Beginning with my
original sample I can estimate the value of n that would be required to make a prediction within
a confidence interval of a certain size and then increase the size of my sample appropriately.

5.2.5.2 Predicting a single future observation

Imagine after I’ve collected my river gravels and performed a regression analysis, I decide to return
to the river to collect one more piece of gravel at a distance X0 downstream. Clearly at any given
point along the river the gravels will have a distribution of sizes and this needs to be included in
our analysis. The best prediction of the size of this new piece of gravel is still the mean given
by the regression model, but now we have to include an uncertainty relating to the distribution
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of gravel sizes at a given location. The equation for the predication interval for a single future
observation is:

µ0 = (a+ bX0)± t0.025s

√
1

n
+

(X0 − X̄)2∑
x2

+ 1. (5.19)

Again we’ll perform the calculation in MATLAB for the gravel data at a collection of positions, X0,
and add the prediction intervals to the existing plot as dotted lines (Figure 5.10). You should be
able to do this by looking at the previous example for confidence intervals. The calculation of
confidence and prediction intervals is only slightly different, so see if you can modify your existing
code to add prediction intervals to your plot. If you need help, the code to calculate prediction
intervals is included at the end of this chapter.

Example code: 25
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Figure 5.10: Regression line showing the linear relationship relating gravel size to distance down-
stream. The dashed lines show the band of 95% confidence intervals for the mean gravel size
downstream, calculated using equation 5.17 and a collection of X0 values. The dotted lines show
the 95% prediction intervals for the gravel size of a single future observation, calculated using
equation 5.19.

You’ll see that equation 5.19 looks very similar to equation 5.17, but notice the +1 inside the
square-root. This term has an important effect as we increase n. Again, for an infinitely large
sample, equation 5.19 would become:

µ0 = (a+ bX0)± t0.025s
√

1,

so we can see the prediction interval will never be reduced to 0, no matter how many samples are
included in the analysis. At first this may seem a bit odd because by considering an infinitely
large sample you would think that we had removed all uncertainty, but this is not the case. As
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mentioned above, we know that at a given distance along the river not all the gravel particles will
have the same size. Therefore, we will be selecting a single piece from a distribution of sizes and
thus there is a level of uncertainty associated with the prediction. A further example of this is
given in Figure 5.11 where n is increased for an artificial data set. You can see that as n increases
the confidence interval on the mean gets smaller, but the prediction interval stays approximately
the same width. This is because the data naturally exhibit a scatter around the mean that is not
influenced by n and the prediction interval has to take this scatter into account.
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Figure 5.11: Notice how with increasing sample size (denoted by n) the width of the confidence
interval of the prediction of the mean (dashed lines) decreases and the level of uncertainty is reduced.
In contrast the prediction intervals on a future observation (dotted lines) remain approximately
constant because they have to incorporate the uncertainty created by the scatter of the data. This
scatter is a natural property of the data and is therefore independent of sample size.

5.2.5.3 Make sure you choose the correct interval

There is often confusion as to which kind of interval (confidence interval on the mean or prediction
interval) to use in an analysis. You’ll commonly find that people use confidence intervals on the
mean when in fact they should be using the larger predication intervals. This inappropriate use
of the confidence interval on the mean gives the impression that the data has less uncertainly
associated with it and can lead to spurious inferences. Think carefully about what questions you
are asking of your regression model and make sure that you use the correct form of interval.

5.2.6 Choosing the independent (X) and dependent (Y ) variables

In the case of our river gravels it is clear that the independent variable is the distance downstream
and the dependent variable is gravel size. In many natural data sets, however, the choice of
which variable is independent and which is dependent is less obvious, but it can have important
implications for the outcome of the regression analysis. We’ll investigate this problem using a
classic data set collected by Fisher. The data consist of measurements of irises, specifically the
length and width of the sepals of 50 individuals.
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Figure 5.12: The sepals of a flower lie between the petals.

With this type of data it’s very difficult to say which is the independent variable and which
is the dependant variable (if we can even claim that such a relationship exists at all). We’ll start
by loading the data from the file iris regression.mat and plot len (sepal length) as the inde-
pendent variable and wid (sepal width) as the dependant variable (Figure 5.13). In the examples
above we calculated the various correlation and regression parameters from scratch, but now we
have a chance to use some of the functions built into MATLAB to make things a bit easier.

Example code: 26

>> clear all %clear the memory

>> close all %close the figure windows

>> load iris_regression %load the data file

>> plot(len,wid,'ok') %plot the data

>> xlabel('Length [cm]') %label the x-axis

>> ylabel('Width [cm]') %label the y-axis
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Figure 5.13: The sepal data set from 50 of the irises measured by Fisher.

The first thing we need to test is if there is a significant correlation between sepal length and
width. We can do this using the hypothesis test outlined in Section 5.1.4.

Example code: 27

>> r=corr(len,wid) %calculate the sample correlation coefficient

r = 0.7425

>> n=length(wid) %the number of observations in the data set

>> t=r*sqrt((n-2)/(1-r^2)) %statistic for significance of correlation

t = 7.6807

>> alpha=0.05 %set the significance level for the test

>> tcrit=tinv(1-alpha/2,n-2) %critical value for significance of correlation

tcrit = 2.0106

The correlation coefficient is r = 0.74 and we’ve found that the corresponding test statistic (7.7)
is larger than the critical value (2.0), therefore the correlation between sepal length and width is
significant at the α = 0.05 level. We can now find the regression relationship between sepal length
and width. To do this we’ll use the function regress, which in MATLAB is the standard approach
to building linear models. We’ll then add the regression line to the plot (Figure 5.14).
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Example code: 28

>> n=length(wid) %number of data points

>> b=regress(wid,[len,ones(n,1)]) %form a linear model to predict wid from len

b = 0.7985

-0.5694

>> X0=[min(len) max(len)] %length values for regression line

>> Yhat=b(1)*X0+b(2) %values at ends of regression line

>> hold on %add to the existing plot

>> plot(X0,Yhat,'k') %add regression line to the plot
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Figure 5.14: The sepal data set from 50 of the irises measured by Fisher. The line shows the
regression relationship between sepal length (assumed to be the independent variable) and width
(assumed to be the dependant variable).

We can now make predictions of sepal width based on the values of sepal length with the
regression equation:

width = 0.7985 ∗ length− 0.5694 (5.20)

What will happen if we try the regression the other way around. Rather than predicting the
width from the length, we want to predict the length from the width. We’ll start by switching the
variables so that wid is the independent variable and len is the dependent variable and then we’ll
calculate the correlation coefficient.

Example code: 29

>> r=corr(wid,len) %calculate the sample correlation coefficient

r = 0.7425

We find that the r value (0.74) for wid versus len is identical to the r value for len versus
wid. Therefore switching the assignment of the independent and dependant variables does not
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alter the correlation and we know the correlation remains significant. Now you’ll need find and
plot the regression equation to predict length from width, again using the regress function. Look
at the previous examples to work out how to determine and plot the regression equation predicting
length from width (Figure 5.15).

Example code: 30
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Figure 5.15: The sepal data set from 50 of the irises measured by Fisher. The line shows the
regression relationship between sepal width (assumed to be the independent variable) and length
(assumed to be the dependent variable).

We now have a regression equation to predict sepal length from sepal width:

length = 0.6905 ∗ width+ 2.6390 (5.21)

Now we have to ask ourselves an important question; are the regression relationships given in equa-
tions 5.20 and 5.21 equivalent? We can test this by rewriting equation 5.21 to make a prediction
of sepal width:

length =0.6905 ∗ width+ 2.6390 (5.22)

length− 2.6390

0.6905
= width (5.23)

Now that both regression equations are written in terms of sepal length to make predictions about
sepal width we can compare the regression lines on the same plot (Figure 5.16).
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Example code: 31

>> figure %make a new figure window

>> plot(len,wid,'ok') %plot the variables

>> xlabel('Length [cm]') %label the x-axis

>> ylabel('Width [cm]') %label the y-axis

>> Xlen=[min(len),max(len)] %min and max values of the length

>> hold on %add items to the plot

>> plot(Xlen,0.7985*Xlen-0.5694,'--k') %plot first line as dashed

>> plot(Xlen,(Xlen-2.6390)/0.6905,':k') %plot second line as dotted

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
2

2.5

3

3.5

4

4.5

5

Length [cm]

W
id

th
 [c

m
]

Figure 5.16: Comparison of the two regression equations obtained with sepal length as the inde-
pendent variable (dashed) and sepal with as the independent variable (dotted). The two lines are
different so we can see that the regression equations are not equivalent.

We find that the two regression equations are not equivalent and the analysis is sensitive to
the selection of the independent and dependant variables. We can see why this effect occurs if
we look back at the way the regression line is calculated. In Figure 5.5 we saw that the best-fit
regression line is found by minimizing the sum of the squared residuals, which represent the errors
in Y but the possibility of errors in X is not considered. This also fits with the assumption we
stated earlier that the errors associated to X should be orders of magnitude less than those on
Y (in other words the errors in X are unimportant compared to those in Y ). So the regression
is calculated by minimizing the residuals in Y and does not consider the X direction. Therefore
when we switch the variables on the X and Y axes we will obtain a different regression equation
(Figure 5.17).
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Figure 5.17: Depending on how the independent and dependant variables are selected, the errors
which are minimized are different and therefore different regression equations are obtained.

5.2.6.1 The Reduced Major Axis line

One solution to the problem of the regression equation depending on an arbitrary assignment of
the independent and dependent variables is to use an alternative technique that considers errors
in both the X and Y directions. Rather than minimizing with respect to Y the reduced major
axis (RMA) considers variation in both X and Y by minimizing the total areas of the triangles
that connect each data point to the regression line (Figure 5.18).
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Figure 5.18: Comparison of the (a) least-squares and (b) RMA approaches. Least-squares is based
on the differences (dashed line) between the model and data in the Y direction. RMA is based on
the areas of the triangles (shaded) defined by the differences between the model and data in both
the X and Y directions.

As before the RMA is expressed using a straight line; Y = a+ bX, where

b = sY /sX , (5.24)

a = Ȳ − bX̄, (5.25)

where sY represents the standard deviation of the Y variable and sX represents the standard devi-
ation of the X variable. Returning to Fisher’s irises, we can perform the RMA analysis in MATLAB

and include the resulting line in our plot (Figure 5.19).
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Example code: 32

>> b=std(wid)/std(len) %find the slope of the RMA line

b = 1.0754

>> a=mean(wid)-b*mean(len) %find the intercept of the RMA line

a = -1.9554

>> Xlen=[min(len),max(len)] %min and max values of the length

>> plot(Xlen,b*Xlen+a,'k') %plot the RMA line as solid
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Figure 5.19: Comparison of the two regression equations obtained with sepal length as the inde-
pendent variable (dashed) and sepal width as the dependent variable (dotted). The two lines are
different so we can see that the regression equations are not equivalent. The RMA line is shown
as a solid line.

The RMA line lies between the two other regression estimates and has the equation:

width = 1.0754 ∗ length− 1.9554 (5.26)

But what happens when we switch X and Y again?

Example code: 33

>> b=std(len)/std(wid) %find the slope of the RMA line

b = 0.9299

>> a=mean(len)-b*mean(wid) %find the intercept of the RMA line

a = 1.8183

So when we swap the axes we obtain the RMA line:

length = 0.9299 ∗ width+ 1.8183 (5.27)
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If we rearrange equation 5.27 to make predictions of sepal width on the basis of sepal length we
get:

length = 0.9299 ∗ width+ 1.8183 (5.28)

width =
length− 1.8183

0.9299
(5.29)

width = 1.0754 ∗ length− 1.9554 (5.30)

Compare this result to equation 5.26 and we can see the RMA line is not influenced by our selection
of X and Y . One drawback of the RMA approach, however, is the calculation of confidence and
prediction intervals is not so straight forward. A paper by Warton (see recommended reading)
gives a good discussion of the different approaches to regression and how the different techniques
can be applied.

5.2.7 Extending linear regression

We’ve spent time looking at various ways to fit straight-lines to data and methods, such as confi-
dence intervals, which can be used to assess the uncertainty associated with the line. This ability
is extremely useful and can be applied in certain cases even when our data is not linear. If we can
find a mathematical operation that will transform our data into a form that is expected to follow
a straight-line then we can apply linear regression to estimate the relationship in the data. We’ll
look at two simple examples of this approach.

5.2.7.1 Reciprocal relationships

To find the reciprocal of a number, we simply divide 1 by that number. For example, the reciprocal
of x is 1/x. Let’s consider a simple example:

Y = 7 +
3

X
(5.31)

Here’s what this relationship looks like (Figure 5.2.7.1).
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Figure 5.20: Plot of points along the function Y = 7 + 3/X.

Clearly the points are not following a straight line, however, we can see that equation 5.33 is
very similar to that of a straight-line, particularly if we write it as:

Y = 7 + 3 ∗ 1

X
(5.32)

So, what happens if rather than plotting Y versus X, we instead plot Y versus 1/X (Figure 5.21).
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Figure 5.21: Plot of points along the function Y = 7 + 3/X, with Y plotted as a function of 1/X

We’ve transformed the relationship in such a manner that it can now be expected to follow
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a straight-line. This means we can use least-squares to fit the Y versus 1/X. The intercept and
gradient of the fit provide us with the coefficients of the reciprocal relationship .

In the previous example we considered a specific case, but let’s think more generally. To fit a
relationship of the form:

Y = a+
b

X
(5.33)

perform linear regression to find the straight-line between Y and 1/X. The intercept and gradient
of the straight-line correspond to the least-squares estimates of a and b, respectively.

5.2.7.2 Power laws

This is a slightly more complicated case. A power law is given by a relationship of the form:

Y = kXm (5.34)

Power laws are common in nature, for example, Eugene Shoemaker proposed a power law governs
the relationship between the diameter of meteors and the frequency with which they collide with
Earth. Let’s look at Shoemaker’s data:

Frequency of impact [yr−1] Diameter [m]
1012 10−6

106 10−3

1 1
10−4 102

10−8 104

The values cover many orders of magnitude and if we plot them directly the underlying structure
of the data will be lost. Instead, let’s consider the power law relationship (equation 5.34). If we
take the logarithm of both sides of the equation we get:

log Y = log k +m logX (5.35)

The form of this equation shows that for a power law, if we plot log Y versus logX, we’ll obtain a
straight-line with a gradient of m and an intercept of log k. We’ll try this with Shoemaker’s data
using logarithms to the base 10.
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Example code: 34

>> clear all %clear the memory

>> close all %close all figures

>> Y=[10^12, 10^6, 1, 10^-4, 10^-8]'; %frequencies

>> X=[10^-6, 10^-3, 1, 10^2, 10^4]'; %diameters

>> LY=log10(Y); %log10 frequencies

>> LX=log10(X); %log10 diameters

>> plot(LX,LY,'o') %plot log data

>> xlabel('Log_{10} X') %label x-axis

>> ylabel('Log_{10} Y') %label y-axis

>> b=regress(LY,[LX,ones(5,1)]) %form a linear model

b = -2

0

>> hat=b(1)*LX+b(2) %regression line

>> hold on %add to plot

>> plot(LX,LY,'r') %plot regression line
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Figure 5.22: Plot Shoemaker’s power law relationship with its least-squares regression line.

The fitted line has a gradient of -2 and an intercept of 0. It’s important to remember, however,
that these coefficients describe the line when the data has been log-transformed. Referring back
to equation 5.35, we can see that the gradient of the line gives us an estimate of m, so in this case
m = −2. The intercept provides an estimate of log10 k, so 10 to the power of the intercept gives
k, i.e. k = 100 = 1. For Shoemaker’s power law relationship we can write:

Frequency = 1 ∗Diameter−2 (5.36)

It’s important to consider how the calculation must be adjusted depending on the base of the
logarithm you use. For example, if we had used natural logarithms (rather than logarithms to
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the base 10), then if a is the intercept of the line, k would be given by exp(a). If we had used
logarithms to the base 2, then k would be given by 2a, and so on.

5.3 Polynomial regression

Polynomial equations are a popular tool for fitting data. They have a general form of:

y = b0 zero− order

y = b0 + b1x first− order

y = b0 + b1x+ b2x
2 second− order

y = b0 + b1x+ b2x
2 + b3x

3 third− order

y = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 fourth− order

· · ·

You can see that regression involving a straight-line just involves fitting a first-order polynomial.
When considering higher-order polynomials our least-squares philosophy stays the same, we want
to minimize the squared residuals between the data and the fitted function (Figure 5.23).
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Figure 5.23: Example of a third-order polynomial (cubic) fitted to a collection of data points using
least-squares (i.e. minimizing the squares of the distances between the curve and the data points).

Performing polynomial regression in MATLAB is simple. The function polyfit requires you
to define your independent and dependent data and the order of the polynomial you wish to fit.
So you can see how polyfit works, we’ll try it out on some synthetic data, which we’ll create
based on the relationship y = 5 + 2x+ 2.5x2 + 0.5x3.
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Example code: 35

>> clear all %clear the memory

>> close all %close all figures

>> x=linspace(1,5,10)'; %create x-values

>> y=5+2.*x+2.5.*x.^2+0.5*x.^3; %create y-values

>> p=polyfit(x,y,3) %fit cubic polynomial

p = 0.5000 2.5000 2.0000 5.0000

It’s not surprising that polyfit can fit this perfect data example, but we’ll look at some real
cases later on. The output of polyfit is a vector containing the coefficients of the fitted function
from the highest order term down to the lowest order term. A second function called polyval

allows you to evaluate the function for a given value of x. Let’s use our previous example to find
the value of y for the polynomial coefficients in p at a value of x = 2.5.

Example code: 36

>> yhat=polyval(p,2.5) %predict value

yhat = 33.4375

polyval can handle more than one value at a time. As an example, we’ll generate points along
the function and plot them with the data used in the previous example.

Example code: 37

>> plot(x,y,'ok') %plot the points

>> xhat=linspace(1,5,100)' %100 x-points

>> yhat=polyval(p,xhat) %predicted values

>> hold on %add to plot

>> plot(xhat,yhat,'k') %plot the fit
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Figure 5.24: Example of a third-order polynomial (cubic) fitted to a collection of points using the
function polyfit. Once the polynomial coefficients are estimated, the function can be evaluated
at given points using polyval.

5.3.1 Selecting the polynomial order

As we discussed earlier, a straight-line will always be able to fit 2 data points perfectly. That’s
because we have 2 points and 2 unknowns in the equation y = b0+b1x. This extends to higher order
polynomial fits, if we have n data points we’ll be able to fit them perfectly if we use an n− 1 order
polynomial. Examples of this are shown in Figure 5.25, where I’ve generated random numbers
that are not related to each other, but which I can fit exactly using n− 1 order polynomials.

Figure 5.25: A data set with n points can be fitted perfectly with an n-1 order polynomial.

This result isn’t too surprising. As we add extra terms into the polynomial it can fit the data
more and more closely. Ultimately, when we have as many unknowns in the polynomial as we
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have data points, the function will fit the data perfectly. This leaves us with a problem, how do
we choose what order polynomial to fit to the data. If we simply choose the fit that agrees best
with the data we would always select an n-1 order polynomial, but that’s clearly not physically
meaningful. If we just keep adding terms we’ll ultimately just be fitting the random noise and the
model won’t be useful. Let’s look at the example of this problem. We’ll generate some data that
follows a straight-line, but contains a large amount of noise. We’ll then try fitting the data with
different order polynomials. At each stage we’ll assess the agreement between the data and the
polynomial fit by summing the squared errors (SSE). First we’ll generate a data set to work with.

Example code: 38

>> clear all %clear the memory

>> close all %close figure

>> x=[1:5]'; %x-values

>> y0=0.5.*x+7; %y-values

>> e=randn(5,1)*1; %errors

>> y=y0+e; %combine y and errors

>> figure %new figure

>> plot(x,y,'ok') %plot data

>> hold on %add to figure

>> plot(x,y0,'k-') %true function

>> xlabel('X') %label the x-axis

>> ylabel('Y') %label the y-axis
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Figure 5.26: A noisy data set (points) created by adding random numbers to an underlying linear
relationship (line).

Now we’ll find the SSE for polynomials with order 1 to 4.
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Example code: 39

>> p1=polyfit(x,y,1); %fit 1st order

>> sse1=sum((y-polyval(p1,x)).^2); %1st order SSE

>> p2=polyfit(x,y,2); %fit 2nd order

>> sse2=sum((y-polyval(p2,x)).^2); %2nd order SSE

>> p3=polyfit(x,y,3); %fit 3rd order

>> sse3=sum((y-polyval(p3,x)).^2); %3rd order SSE

>> p4=polyfit(x,y,4); %fit 4th order

>> sse4=sum((y-polyval(p4,x)).^2); %4th order SSE

>> figure %new figure

>> plot([1:4],[sse1 sse2 sse3 sse4],'ok-') %plot SSE results

>> xlabel('Polynomial order') %label the x-axis

>> ylabel('SSE') %label the y-axis
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Figure 5.27: SSE as a function of polynomial order for the noisy data shown in Figure 5.26.

If increasing the order of the polynomial always improves the fit, we have to find a balance
between fitting the data and the complexity of the model. Specifically, can the improvement in
the fit to the data be justified by the inclusion of more polynomial terms in the model. This can
be assessed for 2 models by comparing the improvement in the fit in the data to the difference in
the number of degrees of freedom of the two models. This is a little involved and we’ll start by
defining the sum of squares of errors (SSE), which we used above:

SSE =
∑

(yi − ŷi)2 (5.37)

This gives us a measure of the variability in the data that cannot be explained by the fitted
polynomial relationship. We can perform a sequence of hypothesis tests to assess if an extra term
should be included in the polynomial. Consider the general case of determining if an nth order
polynomial (which we’ll call B) provides a significantly improved fit to the data over an n-1 order
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polynomial (which we’ll call A). The improvement in the model fit to the data can be measured by
comparing the SSE for both cases, i.e. SSE(A)-SSE(B). However, we also have to represent model
complexity. An appropriate way to do this is by comparing the degrees of freedom of each model.
For an model nth order polynomial fitted to N data points, the number of degrees of freedom
is given by df = N − (n + 1). Combining this information with the SSE, we can calculate an
F -statistic:

F =
SSE(A)− SSE(B)

dfA − dfB
/
SSE(B)

dfB
(5.38)

This sets us up to perform a hypothesis test with:

� H0: bn = 0 (B does not offer an improvement over A).

� H1: bn 6= 0 (B does offer an improvement over A).

We can compare our F -value to a F -distribution with dfA − dfB and dfB degrees of freedom
(calculated using the function finv). If the F -value exceeds the critical value associated with a
preselected significance level then we would accept the alternative hypothesis and adopt the more
complex model B. Let’s take a look at this process using an example data set consisting of copper
percentages from a vein along a mine adit (Figure 5.28)
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Figure 5.28: Copper percentage as a function of distance in a vein along a mine adit.
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Example code: 40
The data are stored in a file called copper.mat. Variable Cu contains the copper percentage and
D contains the distance in metres.

Use the F -statistic approach outlined above to decide what order of polynomial should be
used to describe the relationship between copper percentage and distance.

Do this in a sequential way, start by comparing a first-order polynomial to a second-order
polynomial. If you select a second-order polynomial over a first-order polynomial then you should
compare it to a third-order polynomial, etc.

Plot the data and add your selected polynomial to the figure.

A solution to this problem is given at the end of the chapter.

5.3.2 Estimating the quality of the polynomial fit

When studying linear regression we used the coefficient of determination (r2) as a measure of the
proportion of the total data variance explained by the straight line model. We can also calculate
r2 for polynomial regression by comparing the total data variability to the data variability not
explained by the model. This takes the form:

r2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

(5.39)

Using this equation we can calculate r2 for a second order polynomial fitted to the copper data we
analyzed in the previous example.

Example code: 41

>> p2=polyfit(D,Cu,2); %2nd order polynomial

>> hat=polyval(p2,D); %predictions from polynomial

>> top=sum((Cu-hat).^2); %numerator

>> bot=sum((Cu-mean(Cu)).^2); %denominator

>> r2=1-top./bot; %calc r2

r2=0.8665

This shows that ∼87% of the variability in copper percentage can be explained by the fitted
polynomial.

5.3.3 Polynomial confidence and prediction intervals

The calculation of confidence and prediction intervals for polynomials follows the same ideas we
discussed when looking at linear regression. The calculations are a little more involved and we
won’t discuss them in detail (the important part is that you understand what they represent).
Fortunately, polyfit and polyconf can be used to calculate the intervals at given values of X,
which can then be added to a plot. Continuing our copper data example, we can call polyfit
with an extra output that contains information on the errors associated with the fitted polynomial.
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We can use that information as an input to polyconf to obtain the width of the confidence (or
prediction) interval at a given value of X. Notice the extra arguments required by polyconf when
we specify if we want confidence (curve) or prediction (observation) intervals. We’ll add 95%
confidence and prediction intervals to our plot of copper percentages (Figure 5.29).

Example code: 42

>> [p2,S]=polyfit(D,Cu,2); % 2nd order model

>> figure % new figure

>> plot(D,Cu,'ok') % plot data

>> D_hat=linspace(min(D),max(D),100)'; % sequence of distances

>> [Cu_hat,dC]=polyconf(p2,D_hat,S,'predopt','curve'); % confidence interval

>> hold on % add to plot

>> plot(D_hat,Cu_hat,'k') % plot polynomial

>> plot(D_hat,Cu_hat+dC,'r') % upper conf-interval

>> plot(D_hat,Cu_hat-dC,'r') % lower conf-interval

>> [Cu_hat,dP]=polyconf(p2,D_hat,S,'predopt','observation'); % prediction interval

>> plot(D_hat,Cu_hat+dP,'g') % upper pred-interval

>> plot(D_hat,Cu_hat-dP,'g') % lower pred-interval

>> xlabel('Distance [m]') % label x-axis

>> ylabel('Copper [%]') % label y-axis
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Figure 5.29: Copper percentage as a function of distance in a vein along a mine adit with a fitted
second-order polynomial (black line). The 95% confidence and prediction intervals are shown by
red and green lines, respectively.
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5.4 Extra example codes

5.4.1 Prediction intervals

We can calculate and plot the prediction intervals for the gravel data using the confidence interval
code as a template. We need to modify the calculation to take into account the “+1” in the
prediction interval, but the rest is the same.

Example code: Prediction intervals

>> X0=[min(dist):0.1:max(dist)] %sequence of distances at a 0.1 km spacing

>> P=t*s*sqrt(1/n+(X0-mean(dist)).^2/sum(x.^2)+1) %half-width of the PI

>> mu0=a+b*X0 %prediction of size at X0

>> mu0_low=mu0-P %lower value of the 95% PI

>> mu0_up=mu0+P %upper value of the 95% PI

>> plot(X0,mu0_low,':k') %plot the lower Prediction Interval (dotted)

>> plot(X0,mu0_up,':k') %plot the upper Prediction Interval (dotted)

5.4.2 Predicting iris length from width

Here’s the code to calculate the regression relationship between iris length (independent variable)
and width (dependent). This calculation follows the previous example we calculated with width
(independent) and length (dependent), all we need to do is switch the variables around.

Example code: iris length from width

>> figure %make a new plot window

>> plot(wid,len,'ok') %plot the data

>> xlabel('Width [cm]') %label the x-axis

>> ylabel('Length [cm]') %label the y-axis

>> b=regress(len,[wid,ones(n,1)]) %form a linear model to predict len from wid

b = 0.6905

2.6390

>> X0=[min(wid) max(wid)] %width values for regression line

>> Yhat=b(1)*X0+b(2) %\values at end of regression line

>> hold on %add to plot

>> plot(X0,Yhat,'k') %plot regression line

5.4.3 Selecting a copper polynomial

We start the analysis by loading the data and calculating fits for first-order and second-order poly-
nomials. Once we have found their sum of squared errors and degrees of freedom we can calculate
the F -statistic and compare it to a critical value.
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Example code: Selecting a copper polynomial(1)

>> clear all %clear memory

>> close all %close figures

>> load copper %load the data

>> p1=polyfit(D,Cu,1); %1st order polynomial

>> df1=numel(D)-2; %1st order dof

>> SSE1=sum((Cu-polyval(p1,D)).^2); %1st order SSE

>> p2=polyfit(D,Cu,2); %2nd order polynomial

>> df2=numel(D)-3; %2nd order dof

>> SSE2=sum((Cu-polyval(p2,D)).^2); %2nd order SSE

>> alpha=0.05; %set alpha

>> F=((SSE1-SSE2)./(df1-df2))./(SSE2./df2) %F-statistic

F= 34.0989

>> Fcrit=finv(1-alpha,df1-df2,df2) %Critical F

Fcrit= 4.2100

We can see that F > Fcrit, therefore we reject the null hypothesis and accept the alternative
hypothesis that the second-order polynomial provides a statistically significant improvement over
a first-order polynomial. Now we need to compare a third-order polynomial to the second-order
polynomial.

Example code: Selecting a copper polynomial(2)

>> p3=polyfit(D,Cu,3); %3rd order polynomial

>> df3=numel(D)-4; %3rd order dof

>> SSE3=sum((Cu-polyval(p3,D)).^2); %3rd order SSE

>> F=((SSE2-SSE3)./(df2-df3))./(SSE3./df3) %F-statistic

F= 0.3663

>> Fcrit=finv(1-alpha,df2-df3,df3) %Critical F

Fcrit= 4.2252

Now F < Fcrit, therefore we accept the null hypothesis that a third-order polynomial does
not provide a significant improvement over a second-order polynomial. Therefore we’ll select a
second-order polynomial to describe the data. We can now plot the final model

Example code: Selecting a copper polynomial(3)

>> figure %new figure

>> plot(D,Cu,'ok') %plot the data

>> D_hat=linspace(min(D),max(D),100)'; %collection of distances

>> Cu_hat=polyval(p2,D_hat); %copper predictions

>> hold on %add to plot

>> plot(D_hat,Cu_hat,'k') %plot the polynomial

>> xlabel('Distance [m]') %x-axis label

>> ylabel('Copper [%]') %y-axis label

The final plot should look like this:
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Figure 5.30: Copper percentage as a function of distance in a vein along a mine adit fitted with a
second order polynomial.
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6
Multiple linear regression

In the previous chapter we looked in detail at correlation and regression when there was a linear
relationship between two variables. For obvious reasons, the case of two variables is called a
bivariate problem and now we’ll extend the idea to multivariate problems where we consider more
variables.

6.1 Moving to higher dimensions

In mathematics, dimensions are the parameters required to describe the position and relevant
characteristics of any object within a conceptual space. In this way the dimensions of a space
are the total number of different parameters used for all possible objects considered in the model.
Let’s try to make this clearer with some examples.

Imagine I have a data set composed of a single measured parameter and that for the sake of
simplicity I know that my measurements will always lie between 0 and 1. Because I only have
one parameter in my data I only need a 1D representation, which is a straight line. So I could
represent the data by plotting their positions along a line (Figure 6.1) that starts at the coordinate
(0) and finishes at (1).

Now imagine that I measure an additional parameter (again for simplicity assumed to be
between 0 and 1) and combine it with my original parameters to make a 2D data set. If I’m now
going to represent my 2D data in a plot (Figure 6.1) I need place the points within a square with
the corners positioned at the coordinates (0,0), (1,0), (0,1) and (1,1).

We can extend this basic principal further. Each time I add a new parameter, and thus a new
dimension, to my data set I simply add an extra coordinate to the space that I require to represent
the data (Figure 6.1). So a 3D data set is represented in a cube with eight corners; (0,0,0), (1,0,0)
through to (1,1,1). But, what would happen if I have a 4D data set? In such a case we’ll require
a 4D space that has 16 corners ranging from (0,0,0,0) to (1,1,1,1). This 4D shape is known as a
hypercube and although we can’t see what a 4D cube looks like without exploding our 3D brains,
we can easily represent it in a 4D conceptual mathematical space.
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Figure 6.1: How different numbers of dimensions can be represented using increasingly complex
coordinate systems.

We can continue this process of adding as many dimensions as we want (and some problems
require a lot of dimensions) and we never hit a limit. Instead, we just add an extra coordinate each
time we need one. Just to give you some idea of how extreme these things can get, mathematicians
have discovered a symmetrical shape called “The Monster” that looks a bit like a snowflake and
exists in 196883 dimensional space!

Although we can’t draw or build a 4D hypercube, we can attempt to represent it using projec-
tions. For example the cube drawn in Figure 6.1 is a projection of a 3D body on to a 2D surface (a
piece of paper). Similarly we can project a 4D hypercube into 2D. Such a projection is shown in
Figure 6.2 and you should be able to tell immediately that it would be difficult to interpret data
plotted in such a projected space. If that’s the case for 4D, just imagine what would happen for
more complicated data sets with higher numbers of dimensions.

Figure 6.2: A 2D projection of a 4D hypercube (a tesseract).

If you would like to see what a 4D hypercube looks like projected into 3D you should visit the
Arche de la Défense in Paris. Alternatively, if you would like to see a 2D representation of a 3D
projection of a 4D hypercube then you can look at Figure 6.3.
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Figure 6.3: La Grande Arche de la Défense in Paris

Before we finish with this section it’s important to note that many statistical techniques rely
on calculating the distance between points (we’ll look at this in more detail later). Of course in 2D
we can calculate the straight-line distance between points using Pythagoras’ theorem, whereby we
draw a straight-line along the X dimension and a straight-line along the Y dimension to form a
right angled triangle and then the distance is given by the length of the hypotenuse. This procedure
can be extended to 3 or more dimensions, so for any given number of dimensions we can calculate
the distance between two points using Pythagoras’ theorem (Figure 6.4).

x

y

Δx

Δy

x

z

y

Δx
Δy

Δz
D D

D=√Δx2 + Δy2 D=√Δx2 +Δy2+Δz2 

Figure 6.4: Pythagoras’ theorem works in 2 (left), 3 (right) or as many dimensions as you want.

6.2 The basics of multiple linear regression

Multiple linear regression (MLR) is simply a linear regression with more than one independent
variable. For example, what happens when Y is controlled by >1 independent variables? In the 3
dimensional case there are two independent variables, which we’ll call X1 and X2, so the regression
equation to relate them to Y then becomes:

Ŷ = b1X1 + b2X2 + a (6.1)

Such an equation defines a plane, where a is the intercept on the Y -axis (the value when both X1

and X2 are zero) and b1 and b2 are the slopes in the X1 and X2 directions, respectively (Figure 6.5).
Let’s consider the next case, what happens when Y is controlled by 3 independent variables?

Simple, we just extend the regression equation to include the new independent variable, X3, which
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gives the 4-dimensional case
Ŷ = b1X1 + b2X2 + b3X3 + a (6.2)

In this case the regression equation defines a hyperplane that, just like a hypercube, we cannot
visualize easily. However, the method for fitting (hyper-)planes to data with more than one regres-
sor variable is the same as bivariate (X,Y ) regression, namely; least-squares. We’ll examine this
problem in more detail in MATLAB. First we’ll generate some artificial data with a known structure
(so we know the result we should get in advance) and then we’ll build a regression model using
the mlr function.

The first step is to create 2 independent variables, X1 and X2. To do this we’ll generate 2 sets
of random numbers in MATLAB, each consisting of 500 values. Then we’ll calculate the dependent
variable, Y , based on an arbitrary relationship: Y = 0.5X1 + 1.25X2 + 0.9.

Example code: 43

>> clear all %clear the memory

>> close all %close all the existing figures

>> X1=rand(500,1) %500 random numbers for X1

>> X2=rand(500,1) %500 random numbers for X2

>> Y = (0.5*X1) + (1.25*X2) + 0.9 %produce values of Y

We can now plot the data using the plot3 function.

Example code: 44

>> figure %make a new figure

>> plot3(X1,X2,Y,'ok') %plot X1 and X2 vs. Y

>> xlabel('X1') %label x-axis

>> ylabel('X2') %label y-axis

>> zlabel('Y') %label z-axis
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Figure 6.5: Scatter plot of the dependent variable Y formed as a function of the independent
variables X1 and X2.

Next, we’ll build a MLR model using the mlr function and then look at the coefficients of the
fitted equation.

Example code: 45

>> b=mlr(Y,[X1,X2,ones(500,1)]) %MLR model with Y dependant on X1 and X2

b= 0.5000

1.2500

0.9000

You should see that the values of the coefficients match those we used to build the Y values.
Although this is no great surprise, it does demonstrate how we can use the mlr function for MLR.

6.2.1 Identifying significant regressors and making predictions

When working with real data sets we encounter a problem in that some of the independent param-
eters may control the dependant parameter, but others may not. To understand the MLR model
properly we must find which variables are important and which are unimportant. Therefore, we
need statistical parameters that provide information on the quality of a MLR and how important
each variable is in the analysis. Fortunately, the mlr function provides us with this information.

We’ll form a regression model similar to the one above where we construct a data set and then
investigate the information returned by mlr. We’ll start by generating 4 independent parameters,
with each one composed of 500 random numbers. To make things more realistic we’ll also add
some random numbers into the system which will act like measurement noise.
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Example code: 46

>> clear all %clear the memory

>> close all %close all the existing graphics

>> X1=rand(500,1); %500 random numbers for X1

>> X2=rand(500,1); %500 random numbers for X2

>> X3=rand(500,1); %500 random numbers for X3

>> X4=rand(500,1); %500 random numbers for X4

>> E=randn(500,1)*0.1; %500 normally distributed random numbers

We’ll now build the dependent variable, Y , using the relationship Y = 0.5X1+1.25X2+1.05X4+0.9
and then add on the errors. Notice that we only use 3 out of the 4 independent variables. Since
X3 is not included, there should be no significant relationship between X3 and Y . Finally, we’ll
add the simulated random errors to Y .

Example code: 47

>> Y=(0.5*X1)+(1.25*X2)+(1.05*X4)+0.9; %form Y using only X1, X2 and X4

>> Y=Y+E; %add the simulated errors into Y

>> b=mlr(Y,[X1,X2,X3,X4,ones(500,1)]) %form the MLR model

b = 0.5091

1.2284

-0.0344

1.0248

0.9240

You should be able to see that the coefficients for X1, X2 and X4 are close to those that we
used in the construction of Y , but don’t match perfectly. The reason for the slight mismatch in
the coefficients is the errors we added into Y , which means that our estimate, b, of the true model
parameters, β, is not perfect. The coefficient for X3 is small, which implies that the influence X3

has on Y is small. We can obtain the Y values predicted by the returned linear model using the
coefficients returned by mlr (Figure 6.6).

Example code: 48

>> Yhat=b(1)*X1+b(2)*X2+b(3)*X3+b(4)*X4+b(5)

>> plot(Y,Yhat,'ok')

>> xlabel('Y')

>> ylabel('Predicted Y')
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Figure 6.6: Scatter plot of the dependent variable Y against the predictions, Ŷ , made by the MLR
model.

Rather than individually multiplying variables by their coefficients and summing, a simpler way
to calculate the predicted values is using matrix multiplication.

Example code: 49

>> Yhat=[X1,X2,X3,X4,ones(500,1)]*b;

Clearly we’ll have to extend the statistical analysis further if we are to obtain information about
β rather than simply b. Fortunately, the mlr function can give us more information about which
coefficients are important in the regression model. This information can be obtained using addi-
tional outputs.

Example code: 50

>> [b,se]=mlr(Y,[X1,X2,X3,X4,ones(500,1)]); %form the MLR model

The extra se output gives an estimate of the standard error on each regression coefficient. Using
this information we can calculate the 95% confidence values on the individual of the individual β
coefficients. These are calculated using Student’s t distribution, this time with n − k degrees of
freedom, where n is the number of data points and k is the number of regressors (including the
intercept). The 95% confidence interval of a given β coefficient can be estimated as:

β = b± t0.025SE (6.3)

where SE is the estimated standard error. For example, finding the 95% confidence interval asso-
ciated with the X4 coefficient could be obtained in MATLAB by:
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Example code: 51

>> n=length(Y) %number of data points in the model

>> k=length(b) %number of regressors in the model

>> tval=-tinv(0.025,n-k) %value from t distribution with n-k dof

>> beta_low=b(4)-tval*se(4) %lower value of the confidence interval

>> beta_up=b(4)+tval*se(4) %upper value of the confidence interval

When you look at the values in beta_low and beta_up you should (hopefully) find that they
define an interval which contains the true value of the X4 coefficient (1.05) which we used when
we created the original data. Fortunately, the mlr function will calculate the confidence intervals
for us. We just need to call mlr with an extra output, which will contain the 95% confidence value
for each element of β:

Example code: 52

>> [b,se,bint]=mlr(Y,[X1,X2,X3,X4,ones(500,1)]); %95% confidence intervals

>> bint %show bint

bint = 0.4771 0.5412

1.1971 1.2597

-0.0658 -0.0030

0.9936 1.0561

0.8924 0.9556

Remember that we constructed the data using the relationship Y = 0.5X1 + 1.25X2 + 0X3 +
1.05X4 + 0.9 and we can see that the estimated confidence intervals for β span the true values
of β (note, your coefficients and confidence intervals might be slightly different to the ones above
because you will have used different random numbers in the construction of E, which will change
the final model fit very slightly).

We can also test which of the variables make a significant contribution to the model, by finding
a t-value given by the ratio of a coefficient to its standard error. We’ll do this for the X3 coefficient
(which we know makes no contribution to the dependent variable). We can then compare the
t-value to a Student’s t-distribution with n − k degrees of freedom to find the significance of the
regressor in the model, which is termed a p-value.

Example code: 53

>> n=length(Y) %number of data points in the model

>> k=length(b) %number of regressors in the model

>> pval=2*(1-tcdf(abs(b(3)/se(3)),n-k)) %find the p-value

As before, mlr will calculate the p-values directly. They are given as the fourth output of the
function.

Example code: 54

>> [b,se,bint,pval]=mlr(Y,[X1,X2,X3,X4,ones(500,1)]) %find the p-values
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The p-values tells us which variables make a significant contribution to the regression model.
Variables with p-values ≤ α are significant, whilst those with p-values > α are non-significant. For
example, if we want to find which variables make a significant contribution to the regression model
at the 0.05 level, we would look for variables in the model with p-values less than or equal to 0.05.
Clearly the mlr results from the above example tell us that X3 is non-significant at the 0.05 level,
which is not surprising considering that it was not used in the construction of the Y data.

6.2.1.1 An example: Plate tectonics

In their 1975 paper “On the relative importance of driving forces of plate motion”, Forsyth and
Uyeda examined the processes that possibly control the speed at which tectonic plates move. They
considered 4 different plate properties that could influence plate speed:

� Total plate area.

� Area of continental part.

� Effective length of ridge.

� Effective length of trench.

In this case effective length is defined as “the length of the boundary which is capable of exerting
a net driving or resisting force. For example, two mid-ocean ridges on opposite sides of a plate
exert no net force on the plate because their effects cancel out”. Forsyth and Uyeda collected a
data set for 12 plates (Figure 6.7).

Figure 6.7: The tectonic plates.
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Plate Total area Continental area Effective ridge Effective trench Speed
name (106 km2) (106 km2) length (102 km) length (102 km) (cm/yr)

North American 60 36 86 10 1.1
South American 41 20 71 3 1.3

Pacific 108 0 119 113 8.0
Antarctic 59 15 17 0 1.7

Indian 60 15 108 83 6.1
African 79 31 58 9 2.1

Eurasian 69 51 35 0 0.7
Nazca 15 0 54 52 7.6
Cocos 2.9 0 29 25 8.6

Caribbean 3.8 0 0 0 2.4
Philippine 5.4 0 0 30 6.4
Arabian 4.9 4.4 27 0 4.2

So the big question is which independent variables could control plate motion and in what way?
We can perform MLR with the four parameters to see how well they can predict the plate speed.
The data are held in a data file called plates.mat and the first step is to load them into MATLAB.

Example code: 55

>> clear all %clear the memory

>> close all %close all figures

>> load plates %load the plates data

There are 5 parameters in the data set; total area is the total area (106 km2), cont area is
the continental area (106 km2), ridge len is the effective ridge length (102 km), trench len is the
effective trench length (102 km) and speed is the plate speed (cm/yr). We can now build the MLR
model to find an equation which predicts plate speed based on the four independent parameters.

Example code: 56

>> [b,~,bint,p]=mlr(speed,[total_area,cont_area,ridge_len,trench_len,ones(12,1)])

>> p %view the p-values

p = 0.1322

0.7566

0.5077

0.0151

0.0004

From the p-values it appears that only the intercept and effective trench length play a significant
role in the regression. This is confirmed by the confidence intervals on the coefficients, whereby
the intervals for the intercept and effective trench length are the only ones not to span 0.
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Example code: 57

>> bint

bint = -0.0899 0.0146

-0.1275 0.0969

-0.0633 0.0344

0.0210 0.1398

2.8113 6.2829

Finally we can plot the measured plate speeds against the speeds predicted by the regression
model (Figure 6.8).

Example code: 58

>> Yhat= [total_area,cont_area,ridge_len,trench_len,ones(12,1)]*b %predictions

>> plot(speed,Yhat,'ok')

>> hold on %add to the plot

>> plot([0 9],[0 9],'k') %line of unity

>> xlabel('Speed (cm/yr)')

>> ylabel('Predicted Speed (cm/yr)')
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Figure 6.8: Scatter plot of the measured plate speed against the predictions of plate speed made by
the MLR model.

6.2.2 Multicollinearity

MLR assumes that the regressors are independent of each other (i.e., they exhibit no correlation).
If, however, a correlation exists between the regressors then they are not independent and suffer
from multicollinearity. If there was a perfect correlation between the regressors X1 and X2, then an
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infinite number of MLR solutions would exist that can all explain the data equally well (however,
perfect correlation is very rare in geological situations). In practice, if multicollinearity exists
the contribution of any regressor to the MLR depends on the other regressors that are already
included in the model. Therefore it is important to check for any correlation between regressors
before beginning MLR and think about the variables you are using.

We will use MATLAB to form a data set with variables which suffer from multicollinearity and
then perform a simple MLR. First, we’ll set up the independent variables (X1 and X2) each con-
sisting of 500 random numbers. We’ll make a third regressor, X3, as a function of X1 and X2,
thus introducing multicollinearity. Then we’ll form the dependent variable, Y , according to the
relationship; Y = 1.3X1 + 0.8X2 + 1.1X3 + 0.5.

Example code: 59

>> clear all %clear the memory

>> close all %close all figures

>> X1=rand(500,1) %500 random numbers for X1

>> X2=rand(500,1) %500 random numbers for X2

>> X3=(0.5*X1)+(0.75*X2)+1.3 %make X3 a function of X1 and X2

>> Y=(1.3*X1)+(0.8*X2)+(1.1*X3)+0.5 %calculate the dependent variable

>> b=mlr(Y,[X1,X2,X3,ones(500,1)]) %form the MLR model

b = 1.1077

0.5115

1.4846

0

We can see that the coefficients in b don’t correspond to the model we constructed. This re-
sults from the multicollinearity and MATLAB can’t find a stable solution. Because the coefficients
returned by the model are not close to the true model, we could fundamentally misunderstand the
system we’re working with. Something surprising happens when we look at the predictions of the
regression model (Figure 6.9).

Example code: 60

>> Yhat= [X1,X2,X3,ones(500,1)]*b %predicted values

>> plot(Y,Yhat,'ok') %plot Y and Yhat

>> hold on

>> plot([1 6],[1 6],'k') %add line of unity

>> xlabel('Y') %label the x-axis

>> ylabel('Predicted Y values') %label the y-axis
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Figure 6.9: Scatter plot of the Y values against the predictions of Y.

We can see that although the predicted coefficients are incorrect, the actual predictions of Y
are perfect. Therefore, the derived relationship between the variables and Y is incorrect because
of the multicollinearity, but the prediction of Y is accurate. This allows us to make predictions
but not to quantify the underlying relationship.

Multicollinearity can be difficult to detect in real data sets where the relationship between the
regressor variables may be poorly understood. There are however cases such as compositional data
where we would expect multicollinearity to occur (Chapter 9). As with bivariate regression it is
also important to consider the following points.

1. Are you sure the relationship is linear?

2. Are there any outliers which could strongly influence the regression (influential values can
be found using Cook’s distance)?

3. Are the data normally distributed?

6.2.3 The taste test

Now it’s your turn, 77 breakfast cereals were rated in terms of their taste. Use MLR to find the
relationship between taste rating and:

� Calorie content.

� Sodium content.

� Carbohydrate content.

� Potassium content.
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The MATLAB file cereals.mat contains the following variables; rating, calories, Na, carbo and
K. Use MLR to find the significant regressors and determine the regression relationship. How does
predicted taste compare to the taste rating? Use the code from the previous examples as a template,
the solution to the problem is on the next page.
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We will assume that any effects of multicollinearity are negligible. Start by performing the
regression:

Example code: 61

>> clear all %clear the memory

>> close all %close all figures

>> load cereals %load the data file

>> [b,~,~,p]=mlr(rating,[calories,carbo,K,Na,ones(77,1)]); %form the MLR model

>> b %model coefficients

b = -0.5475

1.2817

0.0913

0.0399

65.4736

>> p %show p values

p = 0

0.0000

0.0000

0.2602

0.0000

>> hat=[calories,carbo,K,Na,ones(77,1)]*b %predicted values

>> figure %make new figure

>> plot(rating,hat,'ok') %plot predictions

>> hold on %add to plot

>> plot([0 100],[0 100],'k') %plot line of unity

>> xlabel('Rating') %label x-axis

>> ylabel('Predicted Rating') %label y-axis

The results show that the intercept term and the calories, carbo and K variables are signifi-
cant in the regression model, whilst sodium is not significant.
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Figure 6.10: Scatter plot of the taste rating values against the predictions of taste rating.
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The average human has one breast and one testicle.

Des McHale

7
Cluster analysis

In the previous discussion of regression techniques we assumed that variables were related by some
form of continuous relationship that could be described by a line or a similar function. In some
situations, however, we may expect data to fall into a collection of discrete groups rather than
describing a continuous path. An example is given on the left of Figure 7.1, which shows the
regression line for the river gravels we studied earlier. Not surprisingly, we found that the change
in gravel size as we moved downstream could be described by a continuous line. On the right of
Figure 7.1 you can see a very different situation where the data points appear in distinct groups.
Would it make sense to fit a straight-line through this data? Clearly not, we would be using a
continuous function to try and describe a data set that appears not to be continuous. Instead we
can gain insights into the data by trying to find and characterize the groups of data within the
sample. To do this we will employ cluster analysis.

Figure 7.1: An example of the kinds of data that should be analyzed using regression analysis (left)
and cluster analysis (right).
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7.1 The principals behind cluster analysis

Cluster analysis, also called segmentation analysis or taxonomy analysis, is a way to create groups
of objects, or clusters, in such a way that the properties of objects in the same cluster are very
similar and the properties of objects in different clusters are quite distinct. Cluster analysis is
a multivariate technique so it can work in large numbers of dimensions, where each dimension
represents one property of the data set. There are a variety of different clustering methods, we’ll
only be looking at a small number of them, but they all work on a similar principal, which is to
measure the similarity between data points.

7.1.1 Distance as a measure of similarity

We naturally think of distance as a good measure of similarity. For example, look at Figure 7.2,
which shows two variables (X and Y ) for 3 data points (A, B and C ). If you were asked which
point is the most similar to point A you would probably say point B simply because it is closest.
Alternatively, if you were asked which point is the most dissimilar to point A you would probably
say C because it is the point which is furthest away. Therefore, a natural measure of the similarity
of points in a parameter space is the distance which separates them.

x

y

C

A

B

Figure 7.2: How can we judge which point, B or C, is the most similar to A?

There are a number of different ways in which we can measure distance. The one we are most
familiar with is the Euclidean distance, which is simply the length of a straight-line connecting two
points. As we saw in Section 6.1 the Euclidean distance can be calculated for any given number of
dimensions using Pythagoras’ theorem. There are, however, different ways to measure distance. A
simple example is the Manhattan Street Block distance, which rather than measuring the shortest
straight-line distance between two points, instead sums the absolute differences of their coordinates
(Figure 7.3). This is also known as Taxicab geometry because if you imagine the grid layout of
streets in New York, a taxi driver cannot go in a straight-line between two locations, but instead
can just move along north-south avenues or east-west streets.
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Figure 7.3: A comparison of Euclidean (left) and Manhattan Street Block (right) distances.

There is even a measure of distance known as the Canberra distance! This measures the
distance of data points from a central point of interest, analogous to how the suburbs are set up
in Canberra. Not surprisingly the Canberra distance was developed by two workers at C.S.I.R.O.
in the ACT.

7.1.2 Data normalization

In cases where the numbers of one variable are much larger than the other variables they can bias
the analysis because they dominate the distance measurement. For example, in an analysis of
humans we could have:

� Height

� Foot length

� Finger width

� Umbilical radius

In this case it is clear that the absolute variations in height will be much larger than the other
variables, therefore they will dominate the analysis. To avoid this effect the data are standardized
before the analysis, this means setting the mean of each variable to 0 and the standard deviation
to 1. This is also known as taking the zscore and for a collection of values, X, we can standardize
the data using the equation:

z =
X − X̄
s

, (7.1)

where X̄ and s are the mean and standard deviation of the values in X, respectively. This is a
simple operation to perform in MATLAB and as an example we’ll standardize a sample of 100 random
numbers.

117



Example code: 62

>> x=rand(100,1); %100 random numbers to act as data

>> mean(x) %Find the mean (should be ~0.5)

>> std(x) %Find the S.D. (should be ~0.29)

>> z=x-mean(x); %x minus the mean of x

>> mean(z) %Find the mean of the adjusted values (0.0)

>> z=z/std(x); %Divide by the S.D. of x

>> std(z) %Find the S.D. of the adjusted values (1.0)

Not surprisingly there is a function in MATLAB that will perform the calculation automatically.
We can call the zscore function, which will standardize the data (in the case of matrices it will
standardize each column separately).

Example code: 63

>> x = rand(100,1); %100 random numbers to act as data

>> z = zscore(x); %Standardize the data

>> mean(z) %Find the mean of the adjusted values (0.0)

>> std(z) %Find the S.D. of the adjusted values (1.0)

One last point is that some cluster analysis techniques work best with normally distributed data.
This is not a strict assumption, but log-normal variables, for example, should be log transformed
(Figure 7.4).
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Figure 7.4: A log-normal distribution (left) can be transformed into a normal distribution (right)
simply by taking the logarithm of the values.

7.2 Hierarchical clustering

One of the simplest forms of clustering is hierarchical clustering. As the name suggests we cluster
points together to form a hierarchy with similar points being clustered early in the process and
dissimilar points being clustered later. It is easiest to demonstrate the procedure graphically and
we’ll do it for 6 points (A through F ) in two dimensional space. The positions of these points are
shown in Figure 7.5.
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Figure 7.5: In our hierarchical clustering example we start with 6 data points based on 2 measured
parameters, X and Y. The individual points are labeled so that we can see how the clustering
procedure advances.

The first step of the hierarchical clustering procedure is to find the 2 points that are most
similar to each other. Because we know that distance is a good measure of similarity, we can
simply say that the two points closest to each other are the most similar. Examination of the data
shows that the closest two points are C and D so we connect them with a line and create a new
data point (shown by a black dot) at the center of the line (Figure 7.6). Simultaneously we’ll track
the development of the clusters in a so-called dendrogram, in which we draw a link between points
C and D at a height corresponding to the distance separating them.
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Figure 7.6: The closest two points, C and D, are deemed to be the most similar and are connected.
A new point is then created halfway along the link between the points. This connection can be
represented in the dendrogram on the right, with the link between the points drawn at a height
corresponding to the distance separating them.

Because we have now connected C and D together, they are no longer considered separately in
the analysis, but instead are represented by the single point midway along their link. Now we need
to find the next most similar pair of points, which is B and E. Again we link the points and create
a new point midway between them (Figure 7.7). We can also add this link to the dendrogram.
Notice in the dendrogram that the link between B and E is higher than the link of C and D
because the points are separated by a greater distance.
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Figure 7.7: Points B and E are connected and an additional link is added to the dendrogram.

The next shortest connection is between F and the midpoint in the link between C and D.
Again we connect these points and insert a new point halfway along the connection (Figure 7.8).
In the dendrogram a connection is made between F and the center of the C and D connection.

120



You should now be able to see how the dendrogram records the sequence of connections that are
being formed in the data set.
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Figure 7.8: The next connection links F with the point between C and D. This is represented in the
dendrogram as a link connecting into the existing C to D link.

The next shortest connection is point A to the middle of the connection between F and C to
D. This link is also added to the dendrogram (Figure 7.9).
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Figure 7.9: Point A is now included in the hierarchy and a link is formed in the dendrogram that
connects it to the existing cluster of points containing C, D and F.

Finally, the center point of the B to E link is connected to the center point that was inserted
when the previous link was made. This connects B and E to the other data points and the final
link is placed in the dendrogram (Figure 7.10).
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Figure 7.10: The final connection completes the hierarchical clustering routine and the resulting link
in the dendrogram shows how all 6 points are connected to each other, the length of the connections
and the sequence in which the connections were made.

To show how hierarchical clustering can be performed in MATLAB we’ll use the same set of data
points and calculate a dendrogram directly. As a first step we’ll enter the data values by hand and
plot them.

Example code: 64

>> clear all %clear the memory

>> close all %close all figures

>> X=[-0.432, -1.665, 0.125, 0.287, -1.146, 1.190] %input X values

>> Y=[1.189, -0.037, 0.327, 0.174, -0.186, 0.725] %input Y values

>> plot(X,Y,'ok') %plot the data points

>> xlabel('X') %label x-axis

>> ylabel('Y') %label y-axis

You should now have a collection of data points like the ones shown in Figure 7.5. When per-
forming cluster analysis in MATLAB it is assumed that your data is in a matrix with each column
representing a different variable (thus the rows are individual cases). We can make X and Y into
columns using the (:) operator and combine them using square brackets. We’ll also create labels
for each case (the letters A through to F).

Example code: 65

>> XY=[X(:),Y(:)] %combine the variables into a matrix (6 rows, 2 columns)

>> cases={'A','B','C','D','E','F'} %case names to identify points

Now that we’ve got the data into the correct format we can perform the hierarchical cluster-
ing. First we must calculate a distance matrix that contains all the Euclidean distances between
the points (remember that distances are fundamental to cluster analysis). Using these distances
the function linkage will calculate the clustering solution, which can then be plotted as a den-
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drogram.

Example code: 66

>> D=squareform(pdist(XY)); %calculate distance matrix

>> L = linkage(D,'average') %calculate the clustering solution

>> dendrogram(L,'label',cases) %plot the final dendrogram

>> xlabel('Cases') %label x-axis

>> ylabel('Height') %label y-axis

You should find that your dendrogram is the same as the one in Figure 7.10. In the example
above it was easy for us to see how the points should be connected together and how the dendro-
gram evolved because it considered a two-dimensional problem. For data with a high number of
dimensions the structure of the hierarchical clustering can be illustrated in a dendrogram and a
data set can be interpreted in terms of which points cluster together.

7.2.1 An example: Fisher’s irises

We looked at sepal measurements from Fisher’s iris data set when we studied regression. Now
we’ll include length and width measurements for the petals as well as the sepals. This means that
we have a 4 dimensional data set. Fisher knew that his data set contained two different species of
iris, so we’ll see if we can detect the different species by performing hierarchical clustering on the
sepal and petal measurements. The data are stored in the file iris cluster.mat that contains
one variable called irises, which consists of 4 columns (1 for each measurement type) and 30 rows
(1 for each measured flower).

Example code: 67

>> clear all %clear the memory

>> close all %close all figures

>> load iris_cluster %load the data file

>> D=squareform(pdist(irises)); %calculate the distance matrix

>> L = linkage(D,'average') %calculate the clustering solution

>> dendrogram(L) %plot the solution

>> xlabel('Cases') %label the x-axis

>> ylabel('Height') %label the y-axis

The resulting dendrogram should look like the one in Figure 7.11. The structure of the den-
drogram clearly shows two clusters of data that correspond to the two different species. The final
link in the dendrogram connects the two clusters together and the height of the link shows that
large differences exist between the two species on the basis of their petal and sepal measurements.
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Figure 7.11: Final dendrogram for 30 cases taken from Fisher’s iris data set. Notice how the
dendrogram reveals clearly the presence of two different species in the sample, which are only
connected by the final link. The numbers along the bottom correspond to the case number in the
data set.

7.2.2 Disadvantages of dendrograms

Although dendrograms are simple to interpret they can become complicated when data sets with
a large number of cases are considered. Fisher’s original data set contained 100 cases and we’ll
run the cluster analysis again considering all the cases. This is the same as the previous exercise,
but the data is stored in the file iris cluster2.mat.

Example code: 68

>> clear all %clear the memory

>> close all %close all figures

>> load iris_cluster2 %load the data file

>> D=squareform(pdist(irises)); %calculate the distance matrix

>> L = linkage(D,'average') %calculate the clustering solution

>> dendrogram(L,100) %plot all 100 cases

>> xlabel('Cases') %label the x-axis

>> ylabel('Height') %label the y-axis

The final dendrogram is shown in Figure 7.12 and you can see that so many cases are now included
that it has become difficult to interpret (if for no other reason than we can no longer see the case
numbers along the bottom). When we looked at smaller data sets the resulting dendrograms could
be easily interpreted. For larger data sets the overall structures are still obvious, for example two
different species of iris, but the fine details require close examination.
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Figure 7.12: Final dendrogram for the 100 cases that compose Fisher’s complete iris data set.
Notice how the fine details of the dendrogram become difficult to interpret when a large number of
cases are included.

7.3 Deterministic k-means clustering

K-means clustering is another way of finding groups within large multivariate data sets. It aims
to find an arrangement of cluster centers and associate every case in the data set to one of these
clusters. The best cluster solution minimizes the total distance between the data points and their
assigned cluster center. The procedure for calculating a k-means clustering follows 4 basic steps:

1. Choose the number of clusters for the analysis.

2. Assume starting positions for the cluster centers.

3. Attribute every sample to its nearest cluster center.

4. Recalculate the positions of the cluster centers until a minimum total distance is obtained
across all the cases.

To demonstrate the ideas behind k-means clustering we’ll look at a graphical example that considers
a simple two-dimensional data set. The data set clearly contains two different groups of points,
those with high X and high Y values and those with low X and low Y values (Figure 7.13). In
k-means clustering we aim to find cluster centers that mark the centers of the different groups.
Each case is then assigned to the nearest cluster center and it is assumed that they have similar
characteristics. Of course, the characteristics of a cluster are given by the location of the center in
the parameter space. Finally, because each case can only belong to one cluster this is a so-called
hard clustering technique.
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Figure 7.13: A simple example of k-means clustering. The cases on the left show that there are two
clear groups in the data. K-means involves defining the centers of these groups (marked by filled
circles) and associating the individual cases to them to form clusters. The positions of the cluster
centers in the parameter space define the characteristics of that cluster.

7.3.1 Visualizing cluster solutions

Because the cluster centers have locations with the same number of dimensions as the original data
it can be difficult to visualize the results of a cluster solution (we’ll return to this problem in more
detail in Chapter 8). One option to visualize the distribution of cases and the locations of the
cluster centers is to simply choose two variables from the input data set and plot the cluster solution
using those variables (although the calculation of the solution still involves all of the variables).
Therefore to obtain a clear plot of the clusters in two-dimensions we must choose 2 variables which
show a good separation between the cluster centers. To look at this problem we’ll return to Fisher’s
100 irises and perform a k-means clustering of the 4 petal and sepal measurements, splitting the
data into 2 clusters (Figure 7.14).
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Figure 7.14: K-means clustering of Fisher’s iris data set. When plotted using the petal length
and petal width variables, a 2 cluster solution can be visualized with a clear separation between
the cluster centers (filled circles). Each case is assigned to its nearest cluster center. Cluster 1
(plus signs) is characterized by a center with small petal widths and small petal lengths. Cluster 2
(multiplication signs) is characterized by a center with large petal widths and large petal lengths.

If we repeat the exercise but now calculate a more complex 3 cluster solution we can see that
it becomes harder to visualize the results with just 2 parameters (Figure 7.15). There is a strong
overlap between two of the clusters, which may indicate that there are too many clusters in the
model (i.e., the data really only consists of 2 groups) or that we haven’t chosen the best parameters
to display the results.

127



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Petal length [cm]

P
et

al
 w

id
th

 [c
m

]

Figure 7.15: K-means clustering of Fisher’s iris data set. When plotted using the petal length and
petal width variables a 3 cluster solution shows a clear overlap between two of the clusters (different
clusters are shown with stars, plus and multiplication signs). There is a poor separation between
two of the clusters in the top right of the plot.

7.3.2 What input data should you use?

The properties of a cluster center are determined from its position within the data space. Therefore
if we are to understand the results of the cluster analysis we must have a clear understanding of
each of the input variables. This means that you shouldn’t include variables in the analysis that
you don’t understand because you won’t be able to interpret them in the final solution.

It is also important not to over-represent any one process or property of the data set. If I have 9
input variables which represent sediment transport mechanisms and only 1 which represents source
area then my analysis will be biased towards a separation based only on transport. You need to
think carefully about your input data and what it represents, don’t include parameters in the
analysis without a clear reason to do so. It is very tempting to include all of your measured data
into an analysis, but ultimately this can make the solution very difficult to interpret, so instead
you should try to form a well designed input.

7.3.3 How many clusters should be included in a model

Selecting how many clusters to include in your data analysis can be a challenge. If you include too
few clusters the true relationships in the data may remain hidden, whilst if you choose too many
the solution will be overly complex and you won’t be able to interpret it. Generally, you should
try and keep the number of clusters low and make sure there is a physically realistic interpretation
that explains what process each cluster represents.
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7.3.3.1 Silhouette plots

A number of statistical tools exist that you can use to decide how many clusters to include in your
analysis. We’ll look at one specific approach called silhouettes. The silhouette value for each data
point is a measure of how similar that point is to the other points in its own cluster compared to
the points in other clusters. Silhouette values range from -1 to +1, where:

� +1 : points are very distant from their neighboring clusters.

� 0 : points are not distinctly in one cluster or another.

� -1: points are probably assigned to the wrong cluster.

Therefore a good cluster solution will be one which produces silhouette values close to +1. The
values for all the cases in a given solution can be displayed in a silhouette plot. Let’s look at an
example of some two-dimensional data that clearly contains 4 clusters (Figure 7.16).
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Figure 7.16: Example two-dimensional data set that clearly contains 4 clusters.

First we’ll calculate a 2 cluster solution, which is clearly inadequate to explain the data given
that we know it contains 4 clusters. The data is split into two clusters and the silhouette values
are generally around 0.5 (Figure 7.17).

129



−2 0 2 4 6
−2

0

2

4

6

8

X

Y

0 0.2 0.4 0.6 0.8 1

1

2

Silhouette Value

C
lu

st
er

Figure 7.17: The assignments of the individual cases to the final clusters are indicated by the
different symbols (left). The silhouette plot on the right gives a histogram of the case silhouette
values for each cluster (blue bars).

Now we can try a more complex 3 cluster solution and again examine the silhouette plot
(Figure 7.18). We can see that the silhouette values for clusters 1 (blue) and 2 (green) are close
to 1, which suggests that points have been assigned to them correctly. Cluster 3 (red), however,
is still spanning two sets of data points, so its silhouette values are reduced.
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Figure 7.18: The assignments of the individual cases to the final clusters are indicated by the
different symbols (left). The silhouette plot on the right gives a histogram of the case silhouette
values for each cluster (blue bars). In this case the values for cluster 3 are still low because it is
spanning two of the clusters in the data.

A 4 cluster solution clearly (and not surprisingly) does a good job of partitioning the data into
its correct groups (Figure 7.19). None of the cases are assigned wrongly so all the clusters have
high silhouette values.
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Figure 7.19: The assignments of the individual cases to the final clusters are indicated by the
different symbols (left). The silhouette plot on the right gives a histogram of the case silhouette
values for each cluster (blue bars).

So far we have only considered the cases where not enough, or just enough, clusters were
included. But what happens when we calculate a solution that contains too many clusters? We’ll
work with the same data set, but this time calculate a 5 cluster solution (Figure 7.20). We can see
that in order to accommodate the extra cluster, one of the clusters has been split into two parts
(bottom right). This means that some of the points in clusters 4 and 5 have low silhouette values
because they are not distinctly in one cluster or another or may have been assigned to the wrong
cluster.
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Figure 7.20: The assignments of the individual cases to the final clusters are indicated by the
different symbols (left). The silhouette plot on the right gives a histogram of the case silhouette
values for each cluster (blue bars). In this case one group in the data has been split into two parts
to accommodate an additional cluster. This leads to an ambiguity in the assignment of the cases
that is reflected in the silhouette plot.

A 6 cluster solution is clearly too complex, with 2 of the data groups (top left and bottom
right) being split in order to accommodate the additional clusters (Figure 7.21). The low values
in the silhouette plot show the high uncertainties associated with the case assignments when the
model is overly complex.
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Figure 7.21: The assignments of the individual cases to the final clusters are indicated by the
different symbols (left). The silhouette plot on the right gives a histogram of the case silhouette
values for each cluster (gray bars). In this case two groups in the data have been split into parts
to accommodate the additional clusters. This leads to an ambiguity in the assignment of the cases
that is reflected in the silhouette plot.

As a general approach to model selection we can calculate the average silhouette value across all
cases for a given number of clusters. If we then compare the different values for different models we
can choose the number of clusters which returns the highest average silhouette value (Figure 7.22).
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Figure 7.22: For our example data set the average silhouette value reaches a maximum when 4
clusters are included in the analysis. This suggests we should select a 4 cluster model to represent
the data. Of course we set the data up to have 4 clusters so this result is not surprising, but it
demonstrates the approach.
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7.4 Now it’s your turn: Portuguese rocks

We’ll look at an example data set composed of the oxide concentrations of 134 Portuguese rocks.
The collection of examined rocks is known to include granites, diorites, marbles, slates, limestones
and breccias. The measured oxides include (all expressed as %); SiO2, Al2O3, Fe2O3, MnO, CaO,
MgO, Na2O, K2O and TiO2. We’ll perform a k-means clustering of the data set and see what kind
of groups appear (and importantly if they make sense geologically). First we’ll load the data, which
is stored in the file rocks cluster.mat. We’ll combine the columns together and standardize the
columns of the data matrix using the zcore function.

Example code: 69

>> clear all %clear the memory

>> close all %close all figures

>> load rocks_cluster %load data set

>> input=[SiO2,Al2O3,Fe2O3,MnO,CaO,MgO,Na2O,K2O,TiO2];

>> z=zscore(input) %zscore the data

As an example we’ll calculate a 3 cluster solution and plot the silhouette plot (which also gives the
mean silhouette value). There is also a specially written function called classify rocks which
will print to the screen how many of each rock type are included in each of the clusters.

133



Example code: 70

>> [idx,cc]=kmeans(z,3) %k-means solution with 3 clusters

>> [s,h] = silhouette(z,idx) %silhouette plot

>> classify_rocks(idx) %display which rocks are in the clusters

--------------

Cluster 1 contains:

Number of granites = 30

Number of diorites = 5

Number of marbles = 0

Number of slates = 0

Number of limestones = 0

Number of breccias = 0

--------------

Cluster 2 contains:

Number of granites = 2

Number of diorites = 5

Number of marbles = 0

Number of slates = 7

Number of limestones = 0

Number of breccias = 0

--------------

Cluster 3 contains:

Number of granites = 0

Number of diorites = 0

Number of marbles = 51

Number of slates = 0

Number of limestones = 28

Number of breccias = 6

Repeat the process with different numbers of clusters and examine the silhouette plot for each
one. As with the example above you can use these values to select which model seems to represent
the data the best. The results of the analysis are shown on the next page.
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The results of the silhouette analysis are shown in Figure 7.23 and suggest that a two cluster
model should be selected.
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Figure 7.23: Silhouette plots. The silhouette values suggest we should select a 2 cluster model to
represent the data.

If we perform the analysis for two clusters we can look at how the rocks are assigned to the
different cluster centers and the properties of the cluster centers. We’ll start by producing the two
cluster model and looking at the cluster assignments.

Example code: 71

>> [idx,cc]=kmeans(z,2) %k-means solution with 2 clusters

>> classify_rocks(idx) %display which rocks are in the clusters

--------------

Cluster 1 contains:

Number of granites = 0

Number of diorites = 0

Number of marbles = 51

Number of slates = 0

Number of limestones = 28

Number of breccias = 6

--------------

Cluster 2 contains:

Number of granites = 32

Number of diorites = 10

Number of marbles = 0

Number of slates = 7

Number of limestones = 0

Number of breccias = 0
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The assignment of the rocks into the two clusters appears to make geological sense with Ca-
rich rocks in Cluster 1 and Si-rich rocks in Cluster 2. The cluster centers are stored in the cc

variable and we will need to examine them to understand the properties of the cluster centers.
First we can simply display the locations of the cluster centers on the screen.

Example code: 72

>> cc

cc = -0.7450 -0.7240 -0.5712 -0.4318 0.7514 -0.0862 -0.6788 ...

1.2923 1.2559 0.9908 0.7491 -1.3035 0.1495 1.1776 ...

In their current form the coordinates of the centers still correspond to the standardized parame-
ters, so they are difficult to interpret. To transform the variables back to the original measurement
space we must perform the inverse of the standardization procedure. This is done by multiplication
with the original column standard deviations of input and then adding on the column means of
input. As an example we’ll perform this operation on the first cluster center, which is stored in
the first row of cc.

Example code: 73

>> cc1=cc(1,:) %extract the cluster center data

>> cc1=cc1.*std(input)+mean(input) %reverse the standardization

>> cc1 %display the cluster center on screen

For the center of the first cluster we obtain oxide percentages of:

SiO2[%] Al2O3[%] Fe2O3[%] MnO[%] CaO[%] MgO[%] Na2O[%] K2O[%] TiO2[%]
1.5 0.6 0.2 0.0 53.5 1.0 0.1 0.2 0.0

Given that cluster 1 contains limestones and marbles the composition above is not surprising.
Repeat the calculation to find the composition of the second cluster center and check that it
matches with what you would expect from the rocks included in the cluster.
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Simplicity, simplicity, simplicity! I say, let your affairs be as two
or three, and not a hundred or a thousand. Simplify, simplify.

Henry David Thoreau

8
Dimension reduction techniques

In the same way that we can draw a projection of a three-dimensional (3D) cube on a two-
dimensional (2D) surface, for multidimensional data sets we can make plots that project a large
number of dimensions into 2D. The limitation of this approach, however, is that the plots can
become difficult to interpret (we discussed this in Section 6.1).

In Section 6.2 we plotted a 3D data set in MATLAB by projecting it into 2D. If you look back
at Figure 6.5 you’ll see that the projection makes it difficult to interpret the data and you can
imagine that as the number of data dimensions increases, this problem gets worse. We’re going
to look at a number of different techniques that are aimed at reducing the number of dimensions
of a data set in order that the data structure can be interpreted more easily. Generally these
approaches are called dimension reduction techniques and come in a variety of different forms.
We’ll focus mainly on a technique called principal component analysis and then briefly look at
some alternative methods.

8.1 Principal component analysis

Look at the two-dimensional data set in Figure 8.1, how many dimensions do we need to describe
its variability?
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Figure 8.1: An example 2D data set. How many dimensions do we need to describe the variability
of the data fully?

Because the data points all fall exactly on a straight-line we can describe their variability fully
with a single dimension (a straight-line passing through the points). This means that we are able
to take the 2D data and by exploiting its structure, specifically the perfect correlation between X
and Y , reduce the number of dimensions needed to represent it to 1. This is shown in Figure 8.2
where the data points are plotted on a 1 dimensional line.

Figure 8.2: Because the data points in Figure 8.1 fall on a line, we can rotate our coordinate
system so that all of the points lie along a single dimension. Therefore their full variability can be
explained in 1D.

Now consider the two-dimensional data set in Figure 8.3, how many dimensions do we need to
describe its variability fully?
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Figure 8.3: Another example of a 2D data set, where the points do not all fall perfectly onto a
straight-line. How many dimensions do we need to describe the variability of the data fully?

Because the points do not lie perfectly on a straight-line we will still need two dimensions to
describe the variability fully. However, we could make a compromise and say that the deviations
from a straight-line are very minor so we could still represent the vast majority of the data vari-
ability using a single dimension passing along the main path of the data. By doing this we’ll lose
some information about the data (specifically their deviations from the line) but maybe that is an
acceptable loss given that we can reduce the number of dimensions required to represent most of
the data variability.

Often in data sets with many variables, a number of the variables will show the same variation
because they are controlled by the same process. Therefore in multivariate data sets we often
have data redundancy. We can take advantage of this redundancy by replacing groups of corre-
lated variables with new uncorrelated variables (the so-called principal components). Principal
component analysis (PCA) generates a new set of variables based on a linear combination of the
original parameters. All the principal components are orthogonal (at right-angles) to each other so
there is no redundant information because no correlation exists between them. There are as many
principal components as original variables, however, because of data redundancy it is common for
the first few principal components to account for a large proportion of the total variance of the
original data.

Principal components are formed by rotating the data axes and shifting the origin to the point
corresponding to the multivariate mean of the data. Let’s look at an example similar to the one
above. We’ll take a 2D data set and see how much of the data variability is explained by the
principal components (Figure 8.4).
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Figure 8.4: In the original data set (left) each dimension explains approximately 50% of the total
variability. Principal components (marked as PC1 and PC2) can be fitted to the data. The data
can then be plotted with the principal components defining a new coordinate system (right) where
89% of the total variability can be explained using a single dimension.

Now we’ll consider a 3D case. In Figure 8.5 the three-dimensional data can be represented very
well using only the first 2 principal components. This simplifies the data into a two-dimensional
system and allows it to be plotted more easily. The first 2 principal components account for 99%
of the total data variability, whilst the third component accounts for the remaining 1%.

−20 −15 −10  −5  0  5  10  15  20−
15

−
10

 −
5

 0
 5

 1
0

−10
−5

0
5

10

X (60% of variability) Y(1
4 

%
 o

f v
ar

iab
ilit

y)

Z
 (

26
%

 o
f v

ar
ia

bi
lit

y)

−20 −10  0  10  20  30

−
3

−
2

−
1

 0
 1

 2
 3

−10
−5

0
5

10

PC1 (82% of variability) PC2 (1
7% of v

aria
bility

)

P
C

3(
1%

 o
f v

ar
ia

bi
lit

y)

Figure 8.5: The original data set is shown on the left and the variability explained by each dimension
is shown in the axis labels. The principal components can be fitted to the data (black lines). The
data can then be plotted with the principal components defining a new coordinate system (right).

Given that the third principal component describes such a small amount of the total data
variability we can consider dropping it from the plot. Therefore if we only plot the first 2 principal
components, as in Figure 8.6, we lose 1% of the data variability from the representation, but maybe
this is worth it when we can represent the data in a 2D rather than 3D plot.
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Figure 8.6: By only plotting the first 2 principal components we lose a small amount of information
(1% in this case), but the data can be plotted in two dimensions and becomes easier to interpret.

We’re not going to dwell on how the principal components are calculated, but instead we’ll
focus on their application. To give you a hint, the principal components are obtained from so-
called eigenvector analysis, which involves the calculation of eigenvalues and eigenvectors. The
eigenvectors describe the directions of the principal components through the data, whilst the
eigenvalues describe the length of the components (the longer the component, the more of the
data variability it describes). Information on how a data set is related to it’s principal components
are given by the scores and loadings. The scores give the coordinates of the data points in the
principal component space and the loadings show how the orientation of the principal components
is related to the original coordinate system. If these concepts aren’t too clear to you at the moment,
some examples should help.

8.1.1 Data normalization

In Section 7.1.2 we discussed why data normalization is important if the variables to be analyzed
have different scales. Normalization is also important in PCA, otherwise it is possible that a small
number of parameters could dominate the analysis. As before, we’ll be using the scale function
to standardize the data before we perform the PCA.

8.1.2 Building blocks

Before we look at geological applications, we’ll consider an artificial example that will hopefully
give you an appreciation of how we can use PCA. We’ll form an artificial data set that contains
data redundancy, i.e., a number of the parameters carry correlated information, then we’ll apply
PCA. Our data set is based on 25 random blocks, like those shown in Figure 8.7. Each block is
defined by the lengths of its long axis (X1), intermediate axis (X2) and the short axis (X3). Of
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course as the names suggest, the lengths must obey the relationship: X1 > X2 > X3. We’ll now
calculate some more properties of the blocks based on the length of the axes.

� X1 = Longest axis length.

� X2 = Intermediate axis length.

� X3 = Shortest axis length.

� X4 = Longest diagonal length (
√
X2

1 +X2
2 +X2

3 ).

� X5 = The ratio (X1 +X2)/X3.

� X6 = Ratio of the block’s surface area to its volume.

Figure 8.7: 25 blocks with randomly generated dimensions.
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The first thing we can do to investigate the structure of the blocks data set is to look at how
the different parameters (X1 through X6) are correlated to each other. Given that we know how
the data set was constructed we should have a general feeling of what correlations should exist.
We can calculate a so-called correlation matrix, which consists of the correlation of each parameter
to all the other parameters and plot it in an form which is easy to interpret (Figure 8.8).
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Figure 8.8: Graphical representation of the blocks correlation matrix. The colour and orientation
of the ellipses indicates either a positive (blue) or negative (red) correlation. Additionally, a darker
shade of the colour indicates a stronger correlation. The strength of the correlation is also indicated
by the form of the ellipse, ranging from circles (no correlation) to straight-lines (perfect correlation).

The correlation matrix shows the kind of relationships we would expect. For example a strong
positive correlation exists between X1 and X4, which is not surprising because as the longest
side of the block increases the length of the diagonal should also increase. We also see negative
relationships, for example between X3 and X5, again this is not surprising because as the length of
the shortest side increases, X5 will decrease because the denominator in the ratio becomes larger.
Because some of the parameters in the blocks data set are correlated to each other it means that
we have data redundancy and PCA should provide us with a good representation of the data
variability. We can test this supposition be calculating the so-called scree plot, which shows how
much of the data variability each principal component represents (Figure 8.9).

143



1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Component

R
el

at
iv

e 
va

ria
nc

e

Figure 8.9: A scree plot of the PCA of the blocks data set. The scree plot shows how much variance
each principal component explains.

Remember, the aim of PCA is to provide a good representation of the data variability in a small
number of dimensions. Therefore it is important to check the scree plot and see what proportion
of the variance is explained by the first 2 or 3 principal components. In the case of the blocks data,
the first two principal components explain >90% of the data variability. Therefore we know that
we are not losing too much information by only considering the first 2 principal components. We
can now plot the blocks according to their coordinates with respect to the principal components.
This information is given by the scores and we’ll simply plot each block according to its scores
with respect to the first and second principal components (Figure 8.10).
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Figure 8.10: PCA representation for the 25 blocks based on the scores of the first 2 principal
components.

We can now see that the positions of the blocks in the principal component space follow gen-
eral trends according to their shape characteristics. We can get this information in more detail by
studying the loadings, which show how the directions of the principal components are related to
the original parameters.

Parameter Component 1 Component 2
X1 -0.37 0.44
X2 -0.44 0.20
X3 -0.44 -0.34
X4 -0.47 0.30
X5 0.15 0.69
X6 -0.47 -0.29

Looking at the first principal component we can see that all the parameters, except X5, change
in the same way (i.e., they have the same sign). So as the scores on the first principal component
increase, the parameters X1, X2, X3, X4 and X6 will decrease (because of the minus signs on the
loadings) and X5 will increase. These loadings make sense when we look back at Figure 8.10 and
see that the blocks become larger as the scores on the first principal component become more
negative. Therefore the first principal component is orientated in such a way as to represent the
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overall size of the blocks. The second principal component is a little more complicated. The
parameters X3 and X6 have opposite signs to the other parameters. Again this is a little clearer if
we look back at the scores in Figure 8.10. We can see that blocks with high scores on the second
principal component tend to be more equidimensional, but those with large negative scores are
more tabular. This makes sense given that in the loadings, X3 has a different sign to X1 and X2.
Therefore it appears the second principal component is representing the shape of the blocks rather
than their size.

Hopefully, this example demonstrates the concepts behind PCA and how we can go about the
interpretation of the results. Of course in a manufactured example like this one it is easier to
understand the results because all the relationships between the different parameters are defined
in advance. In real world examples it is necessary to study the principal component scores and
loadings in detail in order to form a clear understanding of a PCA structure.

8.1.3 Oreodont skull measurements

Oreodonts were large pig-like mammals that were widespread in North America during the Oligocene
and Miocene (Figure 8.11).

Figure 8.11: Agriochoerus antiquus.

The skulls of 82 individuals were examined and the measurements of four different parts of the
skull were taken:

� Braincase width.

� Cheek tooth length.
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� Bulla length.

� Bulla depth.

We’ll now perform a PCA on the oreodont skull measurements. As a first step we’ll load the data
file (Orodont.mat) and plot all the variables in the data matrix, X, against each other in a series
of 2D plots (Figure 8.12).

Example code: 74

>> clear all %clear memory

>> close all %close all figures

>> load orodont

>> subplot(3,2,1)

>> plot(X(:,1),X(:,2),'ok')

>> xlabel('Braincase width')

>> ylabel('Cheek tooth length')

>> subplot(3,2,2)

>> plot(X(:,1),X(:,3),'ok')

>> xlabel('Braincase width')

>> ylabel('Bulla length')

>> subplot(3,2,3)

>> plot(X(:,1),X(:,4),'ok')

>> xlabel('Braincase width')

>> ylabel('Bulla depth')

>> subplot(3,2,4)

>> plot(X(:,2),X(:,3),'ok')

>> xlabel('Cheek tooth length')

>> ylabel('Bulla length')

>> subplot(3,2,5)

>> plot(X(:,2),X(:,4),'ok')

>> xlabel('Cheek tooth length')

>> ylabel('Bulla depth')

>> subplot(3,2,6)

>> plot(X(:,3),X(:,4),'ok')

>> xlabel('Bulla length')

>> ylabel('Bulla depth')
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Figure 8.12: The various oreodont skull measurements displayed as a collection as bivariate plots.

Just as with the blocks example we can calculate the correlation matrix and plot it (Fig-
ure 8.13).

Example code: 75

>> labels={'BC width','CT length','B depth','B length'}

>> correlationCircles(X,'varNames',labels)

We see strong positive relationships between the 4 different measurement types, this is not too
surprising because we would expect that as one component of a skull gets larger, all the other
components become larger as well. The high correlation suggests that a data redundancy may
exist that can be exploited by PCA.
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Figure 8.13: Correlation matrix for the four sets of measurements made on the collection of ore-
odont skulls.

The first step of the PCA is to standardize the data using the zscore function and then process
the data with the princomp function. To illustrate the results we’ll then plot the first 2 principal
components (Figure 8.14).

Example code: 76

>> Xz=zscore(X) %standardize the data

>> [coeff,score]=princomp(Xz) %calculate the PCA solution

>> plot(score(:,1),score(:,2),'ok') %plot the PCA scores

>> xlabel('PC1') %label the x-axis

>> ylabel('PC2') %label the y-axis
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Figure 8.14: Score of the first two principal components for the 82 oreodont skulls.

We can see that the collection of skulls appears to fall into two different groups that may cor-
respond to different species. To understand these groups in more detail we must first look at the
scree plot to see how much of the data variability is explained by the first 2 principal components
and then the principal component loadings. First the scree plot (Figure 8.15).

Example code: 77

>> scree_plot(Xz) %proportion of explained variance
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Figure 8.15: Scree plot from the PCA of the oreodont skulls. The first 2 principal components
explain ∼96% of the data variability.

The scree plot shows that the first two principal components explain about 96% of the data
variability, which suggests the scores in Figure 8.14 provide a reliable representation of the data.
To understand what the first two principal components represent we must look at the loadings.

Example code: 78

>> coeff(:,1:2)

coeff = Comp.1 Comp.2

Braincase width 0.4971 -0.4879

Cheek tooth length 0.5013 -0.4681

Bulla depth 0.5186 0.2901

Bulla length 0.4824 0.6773

All 4 variables have a similar influence on PC1, this suggests PC1 must represent changes in
skull size. For PC2, the size of the Bulla controls the component in a different way to the size of
the teeth and braincase. This suggests PC2 is related to the shape of the skull.

8.1.4 Now it’s your turn: Fisher’s irises

The petal and sepal lengths and widths for 100 irises are stored in the variable X in the data file
iris cluster2.mat. You should now be able to perform PCA on the iris data by looking at the
oreodont example. To check that you’re on the right track, a plot of the scores for the first two
principal components is given in Figure 8.16.
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Figure 8.16: Score of the first two principal components for Fisher’s 100 irises.

The scores show two groupings, which supports the results of our earlier cluster analysis and
again indicates that two different species are contained in the sample. The first two principal
components explain over 96% of the variability and therefore provide a good representation of the
data set.

8.1.5 A typical application: Marine micropaleontology

There are a large number of different species of benthic foraminifera (∼4000) and they respond to
environmental variables such as:

� Water depth

� Temperature

� Nutrient content

� oxygen content

� and many others

A typical benthic foraminifera data set will contain the number of individuals of different taxa
(maybe∼400) from different depths in a sediment core or many different surface sediment locations.
In this form we may have a 400 dimensional space and we would need 79800 charts if we wanted
to make bivariate scatter plots comparing each of the taxa’s abundances. How can we use PCA
to make the analysis of the assemblage an easier task?

Often in data sets with many variables, a number of the variables will show the same variation
because they are controlled by the same process. Many of the taxa will respond to the same
environmental conditions in a similar way, i.e., we have data redundancy. Therefore, we can
perform a PCA and use the loadings to find which taxa vary with which principal component. We
know which environmental parameters control the specific taxa abundance and therefore we can
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make an environmental interpretation about what the individual principal components represent.
There can be some complicating issues when working with abundance data such as foraminifera
percentages because they are closed data, but we’ll talk about this in more detail in Chapter 9.

8.2 Nonlinear mapping

A nonlinear map (NLM) attempts to find a way in which a high dimensional data set can be
represented in 2 or 3 dimensions, whilst maintaining the underlying structure of the data. It does
this by trying to find a way to position the data points in a lower number of dimensions so that
the distances between all the points are the same as in the original higher dimensional data set.

One way to think of this approach is if we took a collection of data points in high dimensional
space and connected each point to all the other points with springs. These springs should be just
the right length so each one is not stretched or compressed and there is no stress in the system.
Now imagine we take this collection of points connected by springs and without disconnecting
anything, we try to rearrange the points in 2D in such a way that the system still has no stress.
To do this successfully we will need to ensure that each of the springs stays the same length and
is not stressed or compressed in the final configuration of points. If we can achieve this then we
know that the distance of any given point to all the other points must be the same in the 2D
arrangement as it was in the higher dimensional space and therefore we will have preserved the
underlying structure of the data.

To make the explanation above a little clearer, we’ll consider some simple examples. Imagine I
generate a collection of points distributed randomly within a 3D sphere like the ones in Figure 8.17.
If I try to map this collection of points in a sphere from 3D down to 2D it is reasonable to assume
that I get a circle full of points.
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Figure 8.17: A data set consisting of 1000 random points within a 3D sphere were generated (left).
A NLM of the 3D data to map it into 2D produces points within a circle.

Alternatively, we can start with random points in a 5D hypersphere (we can’t visualize this
but it is simple enough to represent mathematically). If we map from 5D to 3D we’ll get a sphere
full of points and if we map to 2D we’ll get a circle full of points (Figure 8.18).
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Figure 8.18: A data set consisting of 1000 random points within a 5D sphere. A NLM of the data
into 3D produces a sphere of points (left) and mapping into 2D produces a circle of points (right).

8.2.1 How does it work

There are a number of different NLM methods (generally termed multidimensional scaling), we
will focus on the method of Sammon (1969) because of its simplicity. If our starting data set has
m dimensions and we want to map it into p dimensions (therefore p < m), we need to define two
different sets of Euclidean distances:

δij = the distance between points i and j in m-dimensional space

dij = the distance between points i and j in p-dimensional space

For any mapping into p dimensional space we can calculate the stress [0,1], which is given by:

E =
1∑n−1

i=1

∑n
j=i+1 δij

n−1∑
i=1

n∑
j=i+1

(δij − dij)2

δij
(8.1)

A value of E = 0 means we get a perfect representation of the m dimensional data structure in
p dimensions, and as E increases towards 1 the representation becomes poorer. The computer
does the hard work, testing lots of different mappings to find which one gives the lowest E value
(although the mapping most probably won’t be perfect).

8.2.2 NLM example: Fisher’s irises

We’ve already studied Fisher’s irises using both cluster analysis and PCA. We reached the conclu-
sion that the sample may contain two different species and we can now check that we find a similar
structure in the data using NLM. As before, the lengths and widths of the petals and sepals for 100
irises are stored in the variable X in the data file NLM iris.mat. We’ll load the data and standard-
ize each of the columns. To calculate the NLM we’ll use the MATLAB function sammon (Figure 8.19).

154



Example code: 79

>> clear all %clear the memory

>> close all %close all figures

>> load NLM_iris %load the iris data for 100 plants

>> Z=zscore(X) %standardize the columns

>> Y = sammon(Z,2) %NLM of matrix of Z into 2D

>> plot(Y(:,1),Y(:,2),'ok') %plot NLM points

>> xlabel('NLM X') %label x-axis

>> ylabel('NLM Y') %label y-axis
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Figure 8.19: NLM of Fisher’s iris data, mapping the data from 4 dimensions down to 2 dimensions.

So, on the basis of the flower measurements the NLM also reveals the presence of two distinct
groups of irises, which may be two different species. An important point to note is the names and
units of the NLM axes. As we saw in equation 8.1 the NLM is based on the distances between
points and the axes will combine the different variables together in such a way that we cannot give
meaningful names or units to the axes. Therefore we just assign the axes arbitrary names, like the
ones in Figure 8.19, which show that we are dealing with an NLM.

8.2.3 NLM example: Portuguese rocks

In Section 7.4 we looked at an example data set composed of oxide concentrations for 134 Por-
tuguese rocks. The collection of examined rocks was known to include granites, diorites, marbles,
slates, limestones and breccias. The measured oxides included (all expressed as %); SiO2, Al2O3,
Fe2O3, MnO, CaO, MgO, Na2O, K2O and TiO2. We’ll extend the data set and include an addi-
tional 9 physical-mechanical measurements, which are as follows:

� RMCS: Compression breaking load (kg/cm2).
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� RCSG: Compression breaking load after freezing tests (kg/cm2).

� RMFX: Bending strength (kg/cm2).

� MVAP: Volumetric weight (kg/m3).

� AANP: Water absorbtion (%).

� PAOA: Apparent porosity (%).

� CDLT: Thermal linear expansion coefficient (10−6/oC).

� RDES: Abrasion test (mm).

� RCHQ: Impact test: minimum fall height (cm).

We now have an 18 dimensional data set and if we wanted to create a collection of scatter plots
showing all the different combinations of variables we would need 144 plots. Instead we can try to
reveal the underlying structure of the data by using NLM to map it into 2D (Figure 8.20). This
is just like the example above, which requires standardization of the columns in the data matrix
and the calculation of the interpoint distances.
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Figure 8.20: NLM of the Portuguese rocks data set containing both oxide and physical-mechanical
measurements. The data is mapped from 18 to 2 dimensions.

8.2.3.1 Cluster analysis and NLM

When we studied k-means clustering we analyzed the Portuguese rocks data set and concluded
that there were two different groups of data. When working with multivariate data sets it is a
challenge to represent the results of a cluster analysis because the cluster centers exist in the same
high dimensional space as the original data. One solution to the problem is to try to represent
the original data in a lower number of dimensions, for example by using PCA or NLM, and then
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building the results of the cluster analysis into that solution. As an example, Figure 8.21 takes
the 2D representation of the Portuguese rocks data set obtained by NLM, but codes the points
according to the cluster assignments that were found in Section 7.4. In this way we can combine
the techniques of cluster analysis and dimension reduction to give more detailed insights into the
data.
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Figure 8.21: A 2D NLM representation of the 18 dimensional rocks data set. The results of a 2
cluster k-means solution are combined with the NLM representation by plotting each point with a
symbol according to the cluster center to which it is assigned (i.e., all the points marked by circles
belong to one cluster and all the points marked by triangles belong to another cluster.)

We can repeat the same process for more complex cluster solutions (i.e., ones involving more
cluster centers). The NLM doesn’t change, but the points are assigned symbols according to which
of the clusters they are assigned to. A 3 cluster solution is shown in Figure 8.22 and a 4 cluster
solution is shown in Figure 8.23.
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Figure 8.22: A 2D NLM representation of the 18 dimensional rocks data set. The results of a 3
cluster k-means solution are combined with the NLM representation by plotting each point with a
symbol according to the cluster center to which it is assigned.
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Figure 8.23: A 2D NLM representation of the 18 dimensional rocks data set. The results of a 4
cluster k-means solution are combined with the NLM representation by plotting each point with a
symbol according to the cluster center to which it is assigned. Two of the clusters (marked by o
and x symbols) overlap strongly, which suggests that 4 clusters are too many to give an appropriate
representation of the data.
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8.2.4 Nonlinear dimensionality reduction by locally linear embedding

Locally linear embedding (LLE) is a recently developed technique that, as suggested by the name,
focuses on the local structure of the data rather than the overall global structure. Sammon’s
approach to NLM employs the distances between all of the points in a data set, therefore it adopts
a global view of the data structure. LLE also attempts to find a low dimension representation that
preserves the distances between points, but for any given data point it only considers the distances
to its nearest neighbors. Therefore local structure should be preserved and, hopefully, if the local
structure is well preserved then the global structure will also be preserved. An example of this
approach is given by the 3 dimensional Swiss roll function (Figure 8.24).

Figure 8.24: The 3D swiss roll function. Notice how the function evolves with a looping form.

We can see that local structure in the Swiss roll function is very important. If we only consider
inter-point distances then we get a false impression of the structure of the function. For example,
the straight-line distance between the start (red) and end (blue) of the function is less than the
distance between the start and the point where the function has completed half a loop (yellow).
Therefore using only interpoint distance we would have to conclude that the blue region of the
function is more closely related to the start of the function than the yellow region. However, since
we can see how the function evolves, it is clear that the yellow part of the function is in fact
more closely related to the start of the function. A global technique like NLM is not designed to
preserve the kind of evolving structure that we see in the Swiss roll function, but LLE is. The
idea behind LLE is to find networks of neighboring points in high dimensional space, like those
in Figure 8.25, and in an approach quite similar to Sammon mapping find a representation that
preserves the inter-point distances in 2D. This is repeated for each data point and thus we obtain
a low-dimensional mapping that focusses on local rather than global structure.
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Figure 8.25: Schematic showing how LLE works. Distances are preserved within local neighbour-
hoods rather than globally, therefore the low-dimensional mapping focusses on local structure. Image
taken from http://cs.nyu.edu/∼roweis/lle/algorithm.html

So, what happens when we apply LLE and Sammon mapping to the Swiss roll function (Fig-
ure 8.26). Because LLE is based on local behavior, the Swiss roll is successfully unrolled and the
local structure is clearly preserved. The Sammon map, however, performs less well and simply
compresses the function along its long axis, failing to uncover the true underlying structure.

Figure 8.26: Examples of the Swiss roll function in 3D (right) mapped into 2D using the LLE
(middle) and Sammon approaches (right). Notice the fundamental differences in the final mappings
that result from considering local or global structure.

8.2.5 Nonlinear principal components analysis

Dimension reduction is an active field of research. As all kinds of databases become larger and
larger we need to find ways in which to analyze their content quickly and represent the information
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they contain in a concise way. This has led to the development of techniques such as nonlinear
principal components, where the components are no longer straight-lines. This means that data
sets that may contain non-linear structures can be represented efficiently. An example of nonlinear
principal component analysis is given in Figure 8.27.

Figure 8.27: An example of nonlinear principal component analysis where the individual com-
ponents can be curved in order to represent nonlinear structures in a data set (taken from
http://www.nlpca.de/).
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The study of ’non-Euclidean’ geometry brings nothing to students
but fatigue, vanity, arrogance, and imbecility.

Matthew Ryan

9
Analysis of compositional data

In this chapter we’re going to look at compositional analysis, which is important in many fields of
the geosciences. Compositional data (also know as closed data), such as the percentage of different
minerals in a rock or the abundances of different microfossils in a sediment, are subjected regularly
to statistical analysis but they have a number of issues that require special attention. We’ll start
by looking at the problems associated with compositional data and then see how we can go about
solving them.

9.1 Absolute and relative information

Imagine that in my kitchen I keep a jar full of jelly beans with three different colours; red, green and
blue. My flatmates like to eat my jelly beans without telling me, but sometimes they also buy new
jelly beans and refill the jar. My flatmates are also picky about which colours of jelly beans they
will eat, Richard only eats red, Greg only eats green and Becky only eats blue. To monitor how
my jelly beans are being eaten and replaced, I decide to stop eating them myself and instead keep
a record of how the content of my jar changes over a week. To start I put 50 red, 40 green and 25
blue jellybeans in the empty jar and then count them again after 1 week. The results look like this:

Time Number of red Number of green Number of blue
Start 50 40 25
Finish 55 5 20

So, the results are clear. There are more red jelly beans in the jar than at the start of the
experiment, therefore Richard must have bought a new bag of red beans. Greg owes me 35 green
jelly beans and Becky owes just 5 blue.

What would have happened in the same experiment if I had expressed all the results as per-
centages rather than the absolute number of jelly beans. The same results would look like this:
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Time Percentage of red Percentage of green Percentage of blue
Start 43 35 22
Finish 69 6 25

How can we interpret these results? The percentage of red and blue have both increased, does
that mean that both Richard and Becky both bought replacement beans? Well we know from the
absolute numbers of beans that only Richard bought new beans, but this information has been
lost when we express the results as percentages. What we can see is that the percentage data
only carries relative information, which is how abundant one colour of bean is compared to the
other colours of beans. Because we have no absolute information we can’t say how the number
of individual colours of beans are changing. This is a key concept, compositional data only carry
relative information.

9.2 Properties of compositional data

In the previous section we saw that compositional data only carry relative information. In statisti-
cal analysis they also require special consideration because they are constrained in two important
ways.

� All the components must be represented by non-negative numbers (i.e., numbers that are
>0).

� The contributions to each composition must total 100% (or 1, or similar).

This second requirement is called the sum-to-one constraint. An example of closed data are sed-
iment grain sizes that are split into sand, silt and clay size fractions. For any given sample, the
sum of the contributions from each of the size fractions must add to 100%.

Sample Sand [%] Silt [%] Clay [%] Total [%]
1 77.5 19.5 3.0 100.0
2 71.9 24.9 3.2 100.0
3 50.7 36.1 13.2 100.0
4 52.3 41.0 6.7 100.0
5 70.0 26.5 3.5 100.0
6 66.5 32.2 1.3 100.0
7 43.1 55.3 1.6 100.0
8 53.4 36.8 9.8 100.0
9 15.5 54.4 30.1 100.0
10 31.7 41.5 26.8 100.0

Because of the sum-to-one constraint, all the information of a D component composition can
be given by D − 1 components. For example consider the grain size compositions for three more
samples, where missing values are shown with question marks.
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Sample Sand [%] Silt [%] Clay [%] Total [%]
1 21.3 57.5 ? 100.0
2 ? 13.2 10.7 100.0
3 63.2 ? 7.8 100.0

Even though each case is represented with only two values, we can immediately work out what
the percentage of the remaining grain size fraction will be because the total for each case must be
100%. Therefore all the information on the 3 grain size components can be represented with just
2 components.

This might seem like a trivial issue, but its effect can be dramatic. As an example think of the
case of a marine micropaleontologist, who has counted the numbers of two different foraminifer
taxa, A and B, through a sediment core. They now want to test how A and B correspond to each
other because it is possible that the two taxa abundances are controlled by the same environmental
conditions. There are two ways to perform this analysis, by comparing the absolute numbers of
individuals or by comparing the percentage abundances of the two species (Figure 9.1)
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Figure 9.1: The comparison of the foraminifer taxa A and B expressed in absolute counts (left) and
as percentages (right). The r2 values give the coefficient of determination for each comparison.

We can see that the results of the two forms of analysis are dramatically different. When
we employ counts of individuals there is clearly no significant correlation between A and B, but
when we use percentages we obtain a perfect negative correlation. The reason behind this result
is clear, if we have a given percentage of species A, then the corresponding percentage of species B
must be (100-A)%. Therefore, when we plot a collection of results we’ll obtain a perfect negative
relationship that is purely a product of the manner in which we have decided to express the data
and has no physical meaning.

You might have two responses to this problem. First, you could decide never to use percentage
data, which is a nice idea but almost impossible in practise. Some forms of data can only be
expressed in a relative sum-to-one form, for example mineral composition that may be given in %,
ppt, ppm, etc. Although it is possible to express data such as foraminifer abundance in absolute
terms, in practise it is very difficult, therefore most assemblage information is normally given
in percentages. Your second response to the problem could be to say that it only deals with 2
parameters whereas your own data set contains many more, for example, 50 different foraminifer
taxa. Unfortunately this doesn’t solve the problem, the sum-to-one constraint will still induce false
correlation when different components of a composition are studied, no matter how many parts
it is made up from. To my knowledge (at the time of writing), there is no statistical technique
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available that can quantify correctly the correlations between the different parts of a composition
(this is worrying when you think how often you see such correlations employed in the scientific
literature).

We have now seen some of the problems caused by the sum-to-one constraint, but in some cases
we can use it to our advantage. You’ll be familiar with representing grain size data in a triangular
ternary plot, where each edge of the triangle represents the abundance of one of the grain size
fractions. Our ability to represent such 3D data sets in a 2D figure (a triangle) without any loss
of information is a direct result of the sum-to-one constraint (Figure 9.2).
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Figure 9.2: Example of grain size data characterized by the relative proportions of sand, silt and
clay, plotted in a 2D ternary plot.

Of course for a given case each of the abundances of the grain size fractions must also be >0,
otherwise the case will plot outside of the triangle. The non-negativity and sum-to-one constraints
should make intuitive sense to us. Imagine that someone told you that “my sediment contains
-20% sand” or “the three grain size fractions in my sediment add up to 105% ” you would know
that there is something wrong with their data.

9.2.1 The simplex as a sample space

In the case of the grain size data we looked at above we can see that as a result of the sum-to-
one and non-negativity constraints the data points are restricted to lying within a triangle. Let’s
think about a simpler case where our data is constructed from just two components, which we’ll
call A and B. If we represent these two parameters in a Euclidean sample space, we find that
points are only allowed to lie on a diagonal line between the coordinates (1,0) and (0,1). If a
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data point sits anywhere except this line then it would need to either contain negative components
(therefore breaking the non-negativity constraint) or A+B 6= 1 (therefore breaking the sum-to-one
constraint). So the compositional data are forced to lie on a 1D line that exists in a 2D space
(Figure 9.3).
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Figure 9.3: Example of the constraints that act on 2 part compositions. Such compositions must
lie on the diagonal line between (1,0) and (0,1), which means they meet both the non-negativity
and sum-to-one constraints. Points that do not fall on the line must violate one or both of the
constraints.

Similarly, if we consider compositions with three components, all of the cases must lie on a 2D
triangle within a 3D space. Because of the sum-to-one constraint the corners, or vertices, of the
triangle must be positioned at (1,0,0), (0,1,0) and (0,0,1), Figure 9.4.
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Figure 9.4: Example of the constraints that act on 3 part compositions. Such compositions must
lie on a triangle (shaded) between the points (1,0,0), (0,1,0) and (0,0,1).

We can extend this idea to higher numbers of dimensions, but they become more difficult to
represent in a diagram. For example a composition with four components must lie within a 3D
tetrahedron with the corners (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1).

The general rule that emerges is that a D component composition must reside within a D-1
dimensional simplex. So a 1D simplex is a line, a 2D simplex is a triangle, a 3D simplex is a
tetrahedron, a 4D simplex is a pentachoron, etc. This means that compositions are not allowed to
exist within any point in Euclidean space, but instead they reside in a so-called simplicial sample
space. At this point you might think “so what”, but simplicial sample spaces have a number of
difficulties associated within them.

9.3 Important aspects of compositional analysis

We have seen in the earlier sections that compositional data have special properties that make
them different to ratio-scale data. For example, most statistical techniques assume that the data
can potentially range between −∞ and∞, whereas compositional data will lie in the interval [0,1]
or in the case of percentages [0,100], etc. Additionally, most statistical methods assume that the
data are held in a Euclidean space, where the dimensions are at 90o to each other. If we think
about the simple case of the ternary diagram, we can see that the dimensions are at 60o to each
other, so we clearly have a problem.

The problems of working with statistics in a simplex are more fundamental than you might
think. This is because Euclidean geometry, which is fundamental to statistical analysis, does not
work within a simplex. We’ll look at some of these issues now.
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9.3.0.1 Distances between points in a simplex

When studying cluster analysis we saw how the similarity between two data points can be measured
in terms of the distance separating them. This is simple for points in a Euclidean space, where
we can just measure the distance between points along each dimension and then use Pythagoras’
theorem to find the length of the line separating the points. When we try something similar in a
ternary plot we hit a problem. The dimensions are at 60o to each other, so when we draw lines
along the dimensions we don’t form a right-angled triangle and we can’t apply Pythagoras’ theorem
(Figure 9.5). Maybe at this stage we shouldn’t be too worried because we can simply use a bit
of extra geometry that doesn’t rely on Pythagoras’ theorem to find the distance between the two
points. However, we do have a problem because the algorithms that are available for calculating
various statistics assume that you can use Pythagoras’ theorem, so you’re going to have a lot of
work if you plan to rewrite them all. In fact the problem is more fundamental because what we
think is a straight-line in our Euclidean minds has a different form in simplicial space.
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Figure 9.5: Because the angles between the dimensions in a simplex are not 90o we can’t use
Pythagoras’ theorem to find the distance between the two points.

9.3.0.2 Straight lines in a simplex

In the previous section we found that we couldn’t employ Pythagoras’ theorem in a simplex because
the dimensions are not at 90o to each other. Now we’re going to make things even worse! We are
used to thinking in terms of Euclidean geometry, where a straight-line is “straight”. In the case
of the simplex however, the dimensions are not at right angles and straight-lines actually appear
as curves (Figure 9.6).
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Figure 9.6: The shortest path between two points in a simplex appears as a curve rather than a
straight-line because the dimensions are not at right-angles to each other.

We won’t dwell on this point because geometry within a simplex is a whole field within itself
(if you’re interested you should see the recommended reading for more details). The fact that the
shortest path connecting two points in a simplex appears as a curve should re-emphasize the point
that we really won’t be able to use Pythagoras’ theorem and Euclidean distances.

9.3.1 Statistics without Euclidean distances

Okay, we can’t use Euclidean distances with compositional data, but how much does that really
limit us? We saw that Euclidean distances are employed in regression analysis (in the form of
residuals) and clustering (to assess similarity), but they are also important in very basic statistics.
For example, we all know that you find the mean of a sample of numbers by summing them and
dividing by the size of the sample. So we know how to calculate a mean, but what does it really
represent? Well it give a proper definition:

The arithmetic mean minimizes the sum of squared Euclidean distances to the individual values.

So Euclidean distances are even involved in a simple mean, therefore we can’t even calculate
something as basic as an average composition using standard statistical methods.
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9.4 Solving the problems

The problems associated with the statistical analysis of compositional data were first identified by
Karl Pearson in 1896. An effort was then undertaken to redesign a number of different statistical
methods so they could be applied to compositional data. However, to go through every existing
statistical approach and find ways to adjust it for compositional data was just too large a task
and the problems associated with compositional data became largely ignored. Instead standard
statistical techniques would be applied to compositional data ignoring the fact that the results could
be entirely spurious. Occasional papers were published warning of the problems with compositional
data analysis, but they were largely ignored because no solutions to the issues could be given.

The framework for the statistical analysis of composition data was set out by John Aitchison
in a series of papers in the 1980s and 1990s. Aitchison’s solution to the problem was not to try to
redesign all statistical approaches to make them suitable for compositional data, but instead he
developed a method to transform composition data so that it could be analyzed using standard
statistical approaches. Aitchison defined two key criteria that the analysis of compositional data
must meet, which we’ll look at now.

9.4.1 Scale invariance

As we saw above, compositional data only carry relative information and any statistical analysis
should respect this issue. As the name suggests, scale invariance simply implies that the results
of a statistical analysis should not depend on the units that the composition is expressed in. For
example if we choose to use %, ppt or ppm the inferences we draw from the statistical analysis
should always be the same.

9.4.2 Subcompositional coherence

We’ll start with Aitchison’s definition of subcompositional coherence:

Subcompositional coherence demands that two scientists, one using full compositions and the other
using subcompositions of these full compositions, should make the same inference about relations
within common parts.

To illustrate this problem we’ll consider a sample composed of 25 specimens of hongite. One
investigator defines the composition of the hongites by percentage occurrence of the five minerals;
albite, blandite, cornite, daubite and endite. Another investigator decides that they will only ex-
amine the three minerals; blandite, daubite and endite. To demonstrate the differences in the way
the data is represented by the two investigators, consider the example of one specimen.

Investigator Albite[%] Blandite[%] Cornite[%] Daubite[%] Endite[%] Total[%]
1 48.8 31.7 3.8 6.4 9.3 100
2 X 66.9 X 13.5 19.6 100

Both investigators want to find out if there is a relationship between the relative abundances
of daubite and endite, so they perform a correlation analysis using all 25 specimens. The results
of this analysis are shown in Figure 9.7.
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Figure 9.7: The correlation of daubite and endite for the two investigators

Notice that the correlations obtained by the two investigators don’t even have the same sign, this
means they would reach very different conclusions about how daubite and endite are related in their
specimens. This result demonstrates that correlations do not exhibit subcompositional coherence
(they are said to be subcompositional incoherent) and the results of the statistical analysis depend
on which minerals were included in the original mineral quantification. Clearly, this is not a good
situation to be in.

9.5 Log-ratio analysis

Aitchison developed the log-ratio transform, which allows compositional data to be transformed in
such a way that they can be examined using standard statistical methods. The development of the
log-ratio transform takes into consideration both scale invariance and subcompositional coherence.
One form of transform developed by Aitchison is the additive log-ratio (alr). To perform the alr we
must choose one variable as a denominator and divide all the other variables by that denominator
and then take the logarithm of the resulting ratios:

yij = log(xij/xiD) (9.1)

Here, xij and xiD are the jth and Dth constituents of the ith specimen. So, in a specimen with 3
components (A,B,C) the alr would result in:[

log

(
A

C

)
, log

(
B

C

)]
As an example, the alr of the composition [80, 15, 5]%:

alr [80, 15, 5] =

[
log

(
80

5

)
, log

(
15

5

)]
= [2.77, 1.10]

Let’s think about the alr in more detail. First it is based on taking ratios of the parameters,
which fits with us only having relative information because a ratio shows how one component is
related to another. Ratios will give us scale invariance because a coefficient relating to the use
of a given unit will disappear. For example, let’s consider 2 mineral components, A and B, with
percentage abundances of 80% and 20%, respectively. We could also write the abundances in terms
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of proportions (0.8 and 0.2), ppt (800 and 200), ppm (800,000 and 200,000), etc. When we take
the ratio the units fall away and all the systems give the same result:

A

B
=

80

20
=

0.8

0.2
=

800

200
=

800, 000

200, 000
= 4

Ratios also help to provide subcompositional coherence because the ratios within a subcomposition
are equal to the corresponding ratios within the full composition. Returning to the composition
of our first hongite specimen:

Investigator Albite[%] Blandite[%] Cornite[%] Daubite[%] Endite[%] Total[%]
1 48.8 31.7 3.8 6.4 9.3 100
2 X 66.9 X 13.5 19.6 100

If the two investigators take the ratios of their daubite and endite percentages they will get the
same result.

6.4

9.3
=

13.5

19.6
= 0.96

Thus, the ratios do not depend on which components a given investigator decided to quantify.
Taking the logarithm has a number of advantages, but one of the most obvious is that it will
transform any ratio to lie in the interval [−∞,∞] which fits with the requirement we discussed in
Section 9.3.

So Aitchison’s approach is pretty simple and follows 3 basic steps.

1. Transform the compositional data using the log-ratio approach.

2. Analyze the transformed data using standard statistical techniques.

3. Perform the inverse transform to return the result to compositional space.

We can see that the third step requires an inverse transform to convert log-ratio values back into
compositions that reside within a unit simplex. As an example, consider log-ratios formed from 3
components, A, B and C, where C is the denominator variable. Then to perform the inverse-alr
(alr−1) and recover the values of A, B, and C:

A =
exp(log(A/C))

exp(log(A/C)) + exp(log(B/C)) + 1

B =
exp(log(B/C))

exp(log(A/C)) + exp(log(B/C)) + 1

C =
1

exp(log(A/C)) + exp(log(B/C)) + 1

To demonstrate the alr we looked at the example:

alr [80, 15, 5] =

[
log

(
80

5

)
, log

(
15

5

)]
= [2.77, 1.10]
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The corresponding alr−1 would therefore be:

exp(2.77)

exp(2.77) + exp(1.10) + 1
= 0.80

exp(1.10)

exp(2.77) + exp(1.10) + 1
= 0.15

1

exp(2.77) + exp(1.10) + 1
= 0.05

We’ll now look at a number of different examples to see how Aitchison’s method can be applied
and how it gives results that are consistent with the behaviour of compositional data.

9.5.1 Finding an average composition

A sample of 23 basalts from the Isle of Skye in Scotland has been characterized according to
specimen compositions of Na2O+K2O (which we’ll call A), Fe2O3 (which we’ll call F ) and MgO
(which we’ll call M). Because we have 3 component compositions we can plot them in a ternary
diagram (Figure 9.8).
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Figure 9.8: A ternary plot showing the composition of 23 basalt specimens from Scotland.

It would be tempting to simply calculate the mean of the A, F and M components directly,
but as we’ve seen in the previous sections this would yield a spurious result. Instead we must take
the log-ratio of the data, calculate the means of the log-ratios and then transform those means
back into A, F and M values (Figure 9.9). The data are stored in the file AFM.mat, which contains
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the data matrix AFM.

Example code: 80

>> clear all %clear the memory

>> close all %close all figures

>> load AFM %load the AFM data

>> ternplot(A,F,M,'ok') %ternary plot

>> vertexlabel('A','F','M') %label plot

>> hold on %add items to plot

>> ternplot(mean(A),mean(F),mean(M),'sr','markerfacecolor','r') %variable means

>> AFMc=alr([A,F,M]); %perform ALR on compositions

>> barc=mean(AFMc); %mean of each ALR component

>> bar=alrinv(barc); %inverse transform to compositional space

>> ternplot(bar(1),bar(2),bar(3),'sb','markerfacecolor','b') %alr-based mean

    

  20

  40

  60

  80

  20 40 60 80

  

20

40

60

80

M A

F

Figure 9.9: A ternary plot showing the composition of 23 basalt specimens from Scotland and the
resultant mean composition (blue square). For comparison the position of the average of the A, F
and M components without taking the compositional nature of the data into consideration is shown
(red square).

We can see that the mean composition sits where we would expect, in the center of the curved
distribution of data points. For comparison, I also calculated the mean using the incorrect method
of just taking the average of each component without using the log-ratio transform. This compo-
sition is marked by a open square and it is positioned towards the edge of the data distribution,
which is obviously not what we would expect for a mean.
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9.5.2 Principal components of compositional data

We studied principal components in detail in Chapter 8. Now we’ll try to find the principal
components of the A, F and M values of our 23 Scottish basalts. Before we start the composi-
tional analysis let’s take a look at what happens if we calculate the principal components without
accounting for the fact that we are working with compositions (Figure 9.10).

    

  20

  40

  60

  80

  20 40 60 80

  

20

40

60

80

M A

F

Figure 9.10: The first two principal components of the basalt data set calculated without applying
the log-ratio transform

We can see from this analysis that as expected the two principal components are at right-angles
to each other. The data distribution, however, seems quite curved and the principal components
don’t do a very good job of describing this curvature. There is an additional problem, if we
lengthen the principal components, they will eventually extend outside the limits of the ternary
plot, which means that they are not physically realistic for a simplicial sample space.

Calculating the principal components using the log-ratio approach is simple in MATLAB. For
completeness we’ll start from the beginning by loading the data, etc, but if you still have all the
basalt data loaded from the previous example then you can go straight into the PCA.
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Example code: 81

>> clear all %clear the memory

>> close all %close all figures

>> load AFM %load the AFM data

>> ternplot(A,F,M,'ok') %ternary plot

>> vertexlabel('A','F','M') %label plot

>> hold on %add items to plot

>> AFMc=alr([A,F,M]); %perform ALR on compositions

>> [coeff,score]=princomp(AFMc); %PCA on transformed data

>> smin=min(score(:,1)); %minimum score on PC1

>> smax=max(score(:,1)); %maximum score on PC1

>> s0=linspace(2*smin,2*smax,1001)'; %scores for plotting PC1

>> pc1=s0*coeff(:,1)'; %ALR values of PC1

>> pc1(:,1)=pc1(:,1)+mean(AFMc(:,1)); %add mean to 1st column

>> pc1(:,2)=pc1(:,2)+mean(AFMc(:,2)); %add mean to 2nd column

>> pc1=alrinv(pc1); %inverse transform to original data space

>> ternplot(pc1(:,1),pc1(:,2),pc1(:,3),'r') %plot PC1

>> smin=min(score(:,2)); %minimum score on PC2

>> smax=max(score(:,2)); %maximum score on PC2

>> s0=linspace(2*smin,2*smax,1001)'; %scores for plotting PC1

>> pc2=s0*coeff(:,2)'; %ALR values of PC2

>> pc2(:,1)=pc2(:,1)+mean(AFMc(:,1)); %add mean to 1st column

>> pc2(:,2)=pc2(:,2)+mean(AFMc(:,2)); %add mean to 2nd column

>> pc2=alrinv(pc2); %inverse transform to original data space

>> ternplot(pc2(:,1),pc2(:,2),pc2(:,3),'b') %plot PC2
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Figure 9.11: The first two principal components of the basalt data set calculated using the log-ratio
transform

The first thing we notice is that the principal components appear to be curves, however when
we think back to Section 9.3.0.2 this is not surprising because we know that straight-lines appear
to be curved inside a simplex. This curvature also means that unlike the non-alr example above,
the principal components will never extend beyond the limits of the ternary plot. The curve in
the first principal component allows it to describe the curvature in the data very clearly and we
can emphasize this point by looking at the variability explained by each of the components and
comparing it to the non-alr analysis (Figure 9.12).
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Figure 9.12: Scores for the first two principal components of the Scottish basalts using the traditional
non-alr approach (left) and the alr method (right).

We can see the scores from the non-alr approach describe a slightly curved path because the
principal components cannot represent the data properly. In constrast, by applying the alr we
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obtain principal components that provide a very good representation of the data with the first
component explaining over 99% of the data variability.

9.5.3 Confidence regions for compositional data

Confidence regions allow us to assess the difference between samples in a quantitative way. Imagine
that I return to Skye and collect 1 new basalt specimen. I then quantify the composition of the
specimen in terms of its A, F and M content. Finally I want to assess if my new basalt specimen
falls into the same compositional distribution as my earlier sample of 23 specimens. There are a
number of different methods that can be used to draw confidence intervals around multivariate
data sets. These confidence regions then provide significance levels with which we can assess
if a point belongs to a distribution or not. Unfortunately such statistics are not designed for
compositional data sets, but the log-ratio method will come to our rescue. We can calculate a
confidence region for the log-ratio transformed data and then perform the inverse transform to
find how the confidence regions are represented in the original compositional space.

Let’s look at an example which employs our Scottish basalt data set. To start, we’ll reload the
data and plot a ternary diagram with a new specimen included (Figure 9.13). The composition of
the new specimen is; A=25%, F=45% and M=30%.

Example code: 82

>> clear all %clear the memory

>> close all %close all figures

>> load AFM %load the AFM data

>> ternplot(A,F,M,'ok') %ternary plot of samples

>> hold on %add new items to plot

>> ternplot(25,45,30,'sr','markerfacecolor','r') %plot new case

>> vertexlabel('A','F','M') %labels
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Figure 9.13: A ternary plot showing the composition of 23 basalt specimens from Scotland (circles).
We then collect a new specimen and determine its composition (red square). Does the new specimen
belong to the same population distribution as our original sample of 23 basalts?

To calculate the alr we’ll use M as the denominator in the ratios. This is, however, an arbitrary
decision and the results should not be sensitive to which parameter we use as the denominator. A
plot of the log-ratios reveals the structure of the compositional data (Figure 9.14).
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Figure 9.14: A plot of the 23 basalt specimens from Scotland (circles) and the new specimen (square)
in log-ratio space.
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Working with the log-ratios we can define confidence ellipses around the 2D distribution of
data points using the MATLAB function conf ellipse. Such confidence ellipses can be added to
the log-ratio plot (Figure 9.15).
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Figure 9.15: 90% (red), 95% (green) and 99% (blue) confidence regions of the true population
distribution represented by the original 23 basalt specimens.

We can see that the new sample is located outside of even the 99% confidence ellipse for the
original specimens, so it would appear that it originates from a different population. Of course
when plotted simply as log-ratios it is difficult to imagine what the confidence ellipses will look
like in the original ternary plot. This is no problem, we can use the inverse alr to transform a
given confidence ellipse back into the original A, F and M compositional space. We can then plot
all the information together in a ternary plot (Figure 9.16). As an example of this process, we’ll
calculate and plot 99% ellipse.

Example code: 83

>> X=[A,F,M]; %combined variables in one matrix

>> Xt=alr(X); %alr of variables

>> c99t=conf_ellipse(Xt,0.99); % 99% confidence ellipse

>> c99=alrinv(c99t); %return c99 ellipse to AFM space

>> ternplot(c99(:,1),c99(:,2),c99(:,3),'b') %plot c99
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Figure 9.16: The 99% confidence ellipse (blue) of the basalt specimens (circles) shows that it is
highly unlikely that the new specimen (square) comes from the same underlying population.

9.5.4 Regression and compositional data

In Chapter 5 we looked at regression in some detail, and as you may have guessed, standard re-
gression cannot be applied to compositional data directly. As an example we’re going to study
sediments collected at 39 different depths in an Arctic lake. The sediments have been classified
in terms of their sand, silt and clay contents and we can plot them in a ternary plot. The data
are stored in the file lake.mat, which contains the 3 variables sand, silt and clay, which are
the grain size fractions in terms of percentages. Also included in the data file is a variable called
depth, which records the water depths at which the sediments were collected. To give a visual
impression of any relationship between depth and grain size composition, we will show the data in
ternary plot and colour code the points according to their depth (Figure 9.17).
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Figure 9.17: Ternary diagram for the sand, silt and clay compositions of 39 sediments from an
Arctic lake. Points are colour coded according to the depth at which they were collected, with red
and blue indicating shallow and deep water, respectively.

The pattern in the ternary plot shows a clear relationship between the grain size composition
of the sediments and the depth at which they were collected. At shallower depths the sediments
contain more sand and as depth increases the sediments become more fine grained. This is exactly
what we would expect from gravity settling with the largest particles being deposited in shallower
waters and only the finer particles making it towards the center of the lake where the water is
deeper. But can we find the regression relationship between grain size and depth?

We could start our analysis by ignoring the fact we are working with compositions and just
blindly apply a regression analysis to the sand, silt and clay percentages as a function of depth.
We could then plot the results of the regression analysis in the ternary plot. You can probably
see by now that this isn’t going to work because we can’t just ignore the problems associated with
compositional data, but if we did, the regression plot would look like Figure 9.18 (there is no point
in showing you how to calculate this regression relationship because it is wrong).
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Figure 9.18: A regression of sediment grain size and collection depth that ignores the fact that the
grain size data are compositions.

We can see that the regression line in Figure 9.18 doesn’t do a very good job of explaining the
data. The data shows a curved trend, whilst the line is straight and we can see that if we extended
the line it would eventually pass outside the boundaries of the diagram. By now, it should be clear
what we need to do to solve these problems. We can apply the alr transform to the grainsize data
in the form:

log

(
sand

clay

)
and log

(
silt

clay

)
We can then calculate the regression in log-ratio space and transform the results back to the orig-
inal compositional data space. We’ll perform the regression using the polyfit function just as we
did in Chapter 5. We’ll first look at the regression in log-ratio space (Figure 9.19) and then plot
everything in the ternary plot.
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Figure 9.19: Regression for the two log-ratios against the log of depth. Red shows the regression
for log(sand/clay) and green shows log(silt/clay).

Now we have the regression models (Figure 9.19), we can create a collection of points calculated
as a function of depth along each of the regression lines. We simply need to perform the inverse
alr transform to return these calculated points to the original sand, silt and clay compositional
data space. This inverse transform is performed by the function alrinv and looks like:

sand =
elog(

sand
clay

)

elog(
sand
clay

) + elog(
silt
clay

) + 1

silt =
elog(

silt
clay

)

elog(
sand
clay

) + elog(
silt
clay

) + 1

clay =
1

elog(
sand
clay

) + elog(
silt
clay

) + 1

Once the sand, silt and clay values along the regression lines have been found they can be plotted
to illustrate the relationship in the ternary plot (Figure 9.20).
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Figure 9.20: Log-ratio based regression line for the Arctic lake sediment data.

The calculated regression line captures the curvature of the data and we can see that even if
the line was extended it would still provide a physically meaningful model. For example, as the
depth becomes shallower the regression line moves towards sediments consisting of only sand and
at greater depths the line moves towards sediments composed of only clay.
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Example: 84

Now it’s your turn. As a final exercise perform the Arctic lake regression using the
strategy we just discussed. Try to solve this problem yourself, but if you need help you can find a
coded solution at the end of the chapter.

The steps to complete the exercise are as follows:

� load the data from lake.mat.

� Plot the data in a ternary plot.

� Find the straight-line relationships between the log of depth and the log-ratios of the grain
sizes.

� Create an array of depth values.

� Find the log-ratios of the grain sizes for the new log depths according to the straight-line
relationships.

� Convert the log-ratio grain sizes back into sand, silt and clay proportions.

� Add the sand, silt and clay proportions from the regression into the ternary plot.

Functions you may find useful

� ternplot - Plot ternary diagram.

� vertexlabel - label ternary diagram.

� alr - log-ratio.

� exp - inverse log-ratio.

� polyfit - Polynomial curve fitting.

� polyval - Polynomial evaluation.

9.6 Outstanding issues in compositional analysis

In this introduction to the statistical analysis of compositional data we have only considered quite
simple cases. Of course things are never as simple as they seem and not all statistical techniques can
be applied to compositional data even if we do employ the alr transform. Determining the extent
of the correlation that exists between parts of a compositional data set is still an open question. As
we saw in Section 9.4.2, subcompositional incoherence means that traditional correlations between
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two parts of a composition are meaningless and unfortunately the use of the alr transform does
not solve this problem.

A family of different log-ratio transforms now exists and some statistical techniques require you
to use a specific transform, whilst others are insensitive to the type of transform you employ. This
means you will always need to do some reading to check that you are using the correct approach
for the questions you are trying to address. A list of good background texts is provided in the
recommended reading.

9.6.1 Dealing with zeros

Finally, one major issue when dealing with compositional data in the geosciences is the presence
of zeros in a data set. For example we might have counted foraminifer abundance in a collection
of sediments and a certain species may be absent in one of the assemblages. It would therefore be
represented in the foraminifer abundances as 0%. However, when we apply the alr we then need
to take the logarithm of 0, which is not defined.

Various strategies have been suggested to deal with the presence of zeros in compositional data,
most of which focus on replacing them with very small values. This is still a problem for geoscience
data sets that may contain large numbers of zeros and as yet a satisfactory way to deal with such
data has yet to be developed.

Maybe there is light at the end of the tunnel, in 2011 Michael Greenarce from the Universitat
Pompeu Fabra developed a method for dealing with zeros by relaxing the subcompositional co-
herence requirement. He found that you could deal with zeros as long as you were willing to let
your analysis be very slightly subcompositionally incoherent. We will have to wait and see how
successful this approach is.
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9.7 Solution: Arctic lake exercise

Example code: Arctic lake sediments

>> clear all %clear the memory

>> close all %close all figures

>> load lake.mat %load the data

>> x=[sand, silt, clay] %combine GS variables in a matrix

>> xt=alr(x); %log-ratio of GS data

>> p1=polyfit(log(depth),xt(:,1),1); %1st regression

>> p2=polyfit(log(depth),xt(:,2),1); %2nd regression

>> Dhat=(min(depth):0.1:max(depth))'; %series of depths

>> x1hat=polyval(p1,log(Dhat)); %predictions for 1st log-ratio

>> x2hat=polyval(p2,log(Dhat)); %predictions for 2nd log-ratio

>> hat=alrinv([x1hat,x2hat]); %inverse alr for predictions

>> sand_hat=hat(:,1); %sand predictions

>> silt_hat=hat(:,2); %silt predictions

>> clay_hat=hat(:,3); %clay predictions

>> figure %create a new figure

>> ternplot(sand,silt,clay,'ok') %plot the data

>> hold on %add items to the plot

>> ternplot(sand_hat,silt_hat,clay_hat,'k') %plot the regression line

>> vertexlabel('sand','silt','clay') %label the plot
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