Evolution of Complex Farth Systems

Lynn S. Fichter and Eric J. Pyle, 2010, Department of Geology and Environmental Science,

James Madison University, Harrisonburg, Virginia, 22807

Evolution by increasing . . .
> complexity
$>$ diversity
> interconnectedness
By the complex systems mechanisms of
> elaborating evolution

self-organizing evolution

> fractionating evolution

Thinking has its strategies and tactics too, much as other

 get some where one of the main things to know is what kind of problem the Earth is.
Earthe systems. are not simple systems (e.g. classical
echanics), or systems of disorganized complexity (crassid mechanics), or systems of disorganized complexity. (classical
thermo dymanics). They are what Warren Weaver called problems of organized complexity, and Ilya Prigozine called
dissipative structures, and we call complex systems in which dissipative structures, and we call complex systems, in which a
half-dozen and even several dozen quantities are all varying half-dozen and even several dozen quantities are all varying
simultaneously and in subtly interconnected ways. The variables simultaneously and in subtly interconnected ways. The variables
are many, but they are not helter-skelter; they are interrelated into an organic whole.

To approach Earth systems from a complex systems iewpoint we are interested in how the evolutionary processes in
one sphere influences the evolutionary processes in another one sphere
sphere. For example:
The fractionating evolution of atmospheric gasses over geologic time has been largely mediated by biological processes,
but not all fractionations are biopocical (eg fractination but not all fractionations are biological (e.g. fractionation of
atmospheric oxygen isotopes, and many but not all mineral atmospheric oo
fractionations).

- Over short geologic time scales (e.g. thousands of years), elaborating evolutionary change has little influence on how
fractionations fractionation occurs, but at longer geological time scales the way that chemical fractionation occurs. way that chemical lractionation occurs.
The fractionating evolution of the atmosphere has at times
changed opportunities for elaborating evolution and changed opportunities for elaborating evolution
subsequently the long.term evolution of life on Earth. subsequently the long-term evolution of life on Earth.
. Meanwhile, the origin of life, and development and structure Meanwhile, the origin of life, and development and structure
of ecosystems are not elaborating mechanisms, but selforganizing ssystems, and they influence how Earth environments
have evolved through time have evolved through time.

By looking at evolution through the universality principles of chaos/complex systems we will see new dimensions and new
possibilities that might not have occurred to us before. A whole possibilities that might not have occurred to us before. A whole
new vision of teaching based on complex evolutionary systems new visison of teaching based on complex evolutionary systems
lies before us. At the same time there is a vast arena of problems and understanding yet to be worked out.

